All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
<detailsopen><summary>Detection</summary>
<detailsopen><summary>Detection (COCO)</summary>
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models.
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.
See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models.
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/), which include 600 pre-trained classes.
- **mAP<sup>val</sup>** values are for single-model single-scale on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/) dataset.
<br>Reproduce by `yolo val detect data=open-images-v7.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
<br>Reproduce by `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu`
</details>
<details><summary>Segmentation (COCO)</summary>
See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set.
<br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
<br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
</details>
<details><summary>Pose</summary>
See [Pose Docs](https://docs.ultralytics.com/tasks/pose) for usage examples with these models.
See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
This guide provides a comprehensive introduction to setting up a Conda environment for your Ultralytics projects. Conda is an open-source package and environment management system that offers an excellent alternative to pip for installing packages and dependencies. Its isolated environments make it particularly well-suited for data science and machine learning endeavors. For more details, visit the Ultralytics Conda package on [Anaconda](https://anaconda.org/conda-forge/ultralytics) and check out the Ultralytics feedstock repository for package updates on [GitHub](https://github.com/conda-forge/ultralytics-feedstock/).
This guide serves as a comprehensive introduction to setting up a Docker environment for your Ultralytics projects. Docker is a platform for developing, shipping, and running applications in containers. It is particularly beneficial for ensuring that the software will always run the same, regardless of where it's deployed. For more details, visit the Ultralytics Docker repository on [Docker Hub](https://hub.docker.com/r/ultralytics/ultralytics).
This guide serves as a comprehensive introduction to setting up a Docker environment for your Ultralytics projects. [Docker](https://docker.com/) is a platform for developing, shipping, and running applications in containers. It is particularly beneficial for ensuring that the software will always run the same, regardless of where it's deployed. For more details, visit the Ultralytics Docker repository on [Docker Hub](https://hub.docker.com/r/ultralytics/ultralytics).
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/), which include 600 pre-trained classes.