|
|
|
@ -285,7 +285,8 @@ class Results(SimpleClass): |
|
|
|
|
txt_file (str): txt file path. |
|
|
|
|
save_conf (bool): save confidence score or not. |
|
|
|
|
""" |
|
|
|
|
boxes = self.boxes |
|
|
|
|
is_obb = self.obb is not None |
|
|
|
|
boxes = self.obb if is_obb else self.boxes |
|
|
|
|
masks = self.masks |
|
|
|
|
probs = self.probs |
|
|
|
|
kpts = self.keypoints |
|
|
|
@ -297,7 +298,7 @@ class Results(SimpleClass): |
|
|
|
|
# Detect/segment/pose |
|
|
|
|
for j, d in enumerate(boxes): |
|
|
|
|
c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item()) |
|
|
|
|
line = (c, *d.xywhn.view(-1)) |
|
|
|
|
line = (c, *(d.xyxyxyxyn.view(-1) if is_obb else d.xywhn.view(-1))) |
|
|
|
|
if masks: |
|
|
|
|
seg = masks[j].xyn[0].copy().reshape(-1) # reversed mask.xyn, (n,2) to (n*2) |
|
|
|
|
line = (c, *seg) |
|
|
|
@ -640,6 +641,15 @@ class OBB(BaseTensor): |
|
|
|
|
"""Return the boxes in xyxyxyxy format, (N, 4, 2).""" |
|
|
|
|
return ops.xywhr2xyxyxyxy(self.xywhr) |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
@lru_cache(maxsize=2) |
|
|
|
|
def xyxyxyxyn(self): |
|
|
|
|
"""Return the boxes in xyxyxyxy format, (N, 4, 2).""" |
|
|
|
|
xyxyxyxyn = self.xyxyxyxy.clone() if isinstance(self.xyxyxyxy, torch.Tensor) else np.copy(self.xyxyxyxy) |
|
|
|
|
xyxyxyxyn[..., 0] /= self.orig_shape[1] |
|
|
|
|
xyxyxyxyn[..., 1] /= self.orig_shape[1] |
|
|
|
|
return xyxyxyxyn |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
@lru_cache(maxsize=2) |
|
|
|
|
def xyxy(self): |
|
|
|
|