`ultralytics 8.0.120` CLI support for SAM, RTDETR (#3273)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
pull/3280/head v8.0.120
Glenn Jocher 2 years ago committed by GitHub
parent 2e8313b032
commit d8701b42ca
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 5
      docs/datasets/detect/index.md
  2. 2
      docs/datasets/segment/index.md
  3. 2
      ultralytics/__init__.py
  4. 2
      ultralytics/nn/tasks.py
  5. 21
      ultralytics/vit/rtdetr/model.py
  6. 2
      ultralytics/yolo/cfg/default.yaml

@ -40,13 +40,12 @@ In this example, the first object is of class 0 (person), with its center at (0.
The Ultralytics framework uses a YAML file format to define the dataset and model configuration for training Detection Models. Here is an example of the YAML format used for defining a detection dataset:
```
```yaml
train: <path-to-training-images>
val: <path-to-validation-images>
nc: <number-of-classes>
names: [<class-1>, <class-2>, ..., <class-n>]
```
The `train` and `val` fields specify the paths to the directories containing the training and validation images, respectively.
@ -105,7 +104,7 @@ TODO
### COCO dataset format to YOLO format
```
```python
from ultralytics.yolo.data.converter import convert_coco
convert_coco(labels_dir='../coco/annotations/')

@ -104,7 +104,7 @@ names: [ 'person', 'car' ]
### COCO dataset format to YOLO format
```
```python
from ultralytics.yolo.data.converter import convert_coco
convert_coco(labels_dir='../coco/annotations/', use_segments=True)

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.119'
__version__ = '8.0.120'
from ultralytics.hub import start
from ultralytics.vit.rtdetr import RTDETR

@ -243,6 +243,8 @@ class DetectionModel(BaseModel):
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
self.stride = m.stride
m.bias_init() # only run once
else:
self.stride = torch.Tensor([32]) # default stride for i.e. RTDETR
# Init weights, biases
initialize_weights(self)

@ -5,6 +5,8 @@ RT-DETR model interface
from pathlib import Path
import torch.nn as nn
from ultralytics.nn.tasks import RTDETRDetectionModel, attempt_load_one_weight, yaml_model_load
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.engine.exporter import Exporter
@ -37,7 +39,7 @@ class RTDETR:
self.task = 'detect'
self.model = RTDETRDetectionModel(cfg_dict, verbose=verbose) # build model
# Below added to allow export from yamls
# Below added to allow export from YAMLs
self.model.args = DEFAULT_CFG_DICT # attach args to model
self.model.task = self.task
@ -125,6 +127,23 @@ class RTDETR:
"""Get model info"""
return model_info(self.model, verbose=verbose)
def _check_is_pytorch_model(self):
"""
Raises TypeError is model is not a PyTorch model
"""
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt'
pt_module = isinstance(self.model, nn.Module)
if not (pt_module or pt_str):
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. "
f'PyTorch models can be used to train, val, predict and export, i.e. '
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")
def fuse(self):
"""Fuse PyTorch Conv2d and BatchNorm2d layers."""
self._check_is_pytorch_model()
self.model.fuse()
@smart_inference_mode()
def export(self, **kwargs):
"""

@ -19,7 +19,7 @@ workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
project: # (str, optional) project name
name: # (str, optional) experiment name, results saved to 'project/name' directory
exist_ok: False # (bool) whether to overwrite existing experiment
pretrained: True # (bool) whether to use a pretrained model
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
verbose: True # (bool) whether to print verbose output
seed: 0 # (int) random seed for reproducibility

Loading…
Cancel
Save