|
|
@ -1309,9 +1309,9 @@ class Exporter: |
|
|
|
model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir) |
|
|
|
model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir) |
|
|
|
model.input_description["image"] = "Input image" |
|
|
|
model.input_description["image"] = "Input image" |
|
|
|
model.input_description["iouThreshold"] = f"(optional) IoU threshold override (default: {nms.iouThreshold})" |
|
|
|
model.input_description["iouThreshold"] = f"(optional) IoU threshold override (default: {nms.iouThreshold})" |
|
|
|
model.input_description[ |
|
|
|
model.input_description["confidenceThreshold"] = ( |
|
|
|
"confidenceThreshold" |
|
|
|
f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})" |
|
|
|
] = f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})" |
|
|
|
) |
|
|
|
model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")' |
|
|
|
model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")' |
|
|
|
model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)" |
|
|
|
model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)" |
|
|
|
LOGGER.info(f"{prefix} pipeline success") |
|
|
|
LOGGER.info(f"{prefix} pipeline success") |
|
|
|