From d5b7d37d2475484bfa1326339dc5bfe43346bf11 Mon Sep 17 00:00:00 2001 From: Laughing-q <1185102784@qq.com> Date: Thu, 25 Apr 2024 15:50:59 +0800 Subject: [PATCH] update C3K2 --- .../cfg/models/exp/yolov8-c3K2-2222-True.yaml | 46 +++++++++++++++++++ ultralytics/nn/modules/block.py | 3 +- 2 files changed, 48 insertions(+), 1 deletion(-) create mode 100644 ultralytics/cfg/models/exp/yolov8-c3K2-2222-True.yaml diff --git a/ultralytics/cfg/models/exp/yolov8-c3K2-2222-True.yaml b/ultralytics/cfg/models/exp/yolov8-c3K2-2222-True.yaml new file mode 100644 index 000000000..ecc695089 --- /dev/null +++ b/ultralytics/cfg/models/exp/yolov8-c3K2-2222-True.yaml @@ -0,0 +1,46 @@ +# Ultralytics YOLO 🚀, AGPL-3.0 license +# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect + +# Parameters +nc: 80 # number of classes +scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs + s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs + m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs + l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs + x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs + +# YOLOv8.0n backbone +backbone: + # [from, repeats, module, args] + - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 + - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 + - [-1, 2, C3K2, [128, True]] + - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 + - [-1, 2, C3K2, [256, True]] + - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 + - [-1, 2, C3K2, [512, True]] + - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 + - [-1, 2, C3K2, [1024, True]] + - [-1, 1, SPPF, [1024, 5]] # 9 + +# YOLOv8.0n head +head: + - [-1, 1, nn.Upsample, [None, 2, "nearest"]] + - [[-1, 6], 1, Concat, [1]] # cat backbone P4 + - [-1, 2, C3K2, [512, True]] # 12 + + - [-1, 1, nn.Upsample, [None, 2, "nearest"]] + - [[-1, 4], 1, Concat, [1]] # cat backbone P3 + - [-1, 2, C3K2, [256, True]] # 15 (P3/8-small) + + - [-1, 1, Conv, [256, 3, 2]] + - [[-1, 12], 1, Concat, [1]] # cat head P4 + - [-1, 2, C3K2, [512, True]] # 18 (P4/16-medium) + + - [-1, 1, Conv, [512, 3, 2]] + - [[-1, 9], 1, Concat, [1]] # cat head P5 + - [-1, 2, C3K2, [1024, True]] # 21 (P5/32-large) + + - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5) diff --git a/ultralytics/nn/modules/block.py b/ultralytics/nn/modules/block.py index a65f708e6..3b3bc8b24 100644 --- a/ultralytics/nn/modules/block.py +++ b/ultralytics/nn/modules/block.py @@ -362,7 +362,8 @@ class C3K(C3): def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels - self.cv2 = Conv(c1, c_, 3, 1) + # self.cv2 = Conv(c1, c_, 3, 1) + self.cv3 = Conv(2 * c_, c2, 3) # optional act=FReLU(c2) self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(3, 3), e=1.0) for _ in range(n)))