diff --git a/docker/Dockerfile b/docker/Dockerfile index be157f796..3e3371667 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -3,7 +3,7 @@ # Image is CUDA-optimized for YOLOv8 single/multi-GPU training and inference # Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch or nvcr.io/nvidia/pytorch:23.03-py3 -FROM pytorch/pytorch:2.2.2-cuda12.1-cudnn8-runtime +FROM pytorch/pytorch:2.3.1-cuda12.1-cudnn8-runtime RUN pip install --no-cache-dir tensorrt # Set environment variables diff --git a/docker/Dockerfile-conda b/docker/Dockerfile-conda index 3eeb10879..0ab647bb0 100644 --- a/docker/Dockerfile-conda +++ b/docker/Dockerfile-conda @@ -20,7 +20,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt . # Install conda packages # mkl required to fix 'OSError: libmkl_intel_lp64.so.2: cannot open shared object file: No such file or directory' RUN conda config --set solver libmamba && \ - conda install pytorch torchvision pytorch-cuda=11.8 -c pytorch -c nvidia && \ + conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia && \ conda install -c conda-forge ultralytics mkl # conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8 ultralytics mkl