|
|
|
@ -4,6 +4,10 @@ import torch |
|
|
|
|
import torch.nn as nn |
|
|
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils.metrics import OKS_SIGMA |
|
|
|
|
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh |
|
|
|
|
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors |
|
|
|
|
|
|
|
|
|
from .metrics import bbox_iou |
|
|
|
|
from .tal import bbox2dist |
|
|
|
|
|
|
|
|
@ -73,3 +77,292 @@ class KeypointLoss(nn.Module): |
|
|
|
|
# e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula |
|
|
|
|
e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 # from cocoeval |
|
|
|
|
return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Criterion class for computing Detection training losses |
|
|
|
|
class v8DetectionLoss: |
|
|
|
|
|
|
|
|
|
def __init__(self, model): # model must be de-paralleled |
|
|
|
|
|
|
|
|
|
device = next(model.parameters()).device # get model device |
|
|
|
|
h = model.args # hyperparameters |
|
|
|
|
|
|
|
|
|
m = model.model[-1] # Detect() module |
|
|
|
|
self.bce = nn.BCEWithLogitsLoss(reduction='none') |
|
|
|
|
self.hyp = h |
|
|
|
|
self.stride = m.stride # model strides |
|
|
|
|
self.nc = m.nc # number of classes |
|
|
|
|
self.no = m.no |
|
|
|
|
self.reg_max = m.reg_max |
|
|
|
|
self.device = device |
|
|
|
|
|
|
|
|
|
self.use_dfl = m.reg_max > 1 |
|
|
|
|
|
|
|
|
|
self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0) |
|
|
|
|
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device) |
|
|
|
|
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device) |
|
|
|
|
|
|
|
|
|
def preprocess(self, targets, batch_size, scale_tensor): |
|
|
|
|
"""Preprocesses the target counts and matches with the input batch size to output a tensor.""" |
|
|
|
|
if targets.shape[0] == 0: |
|
|
|
|
out = torch.zeros(batch_size, 0, 5, device=self.device) |
|
|
|
|
else: |
|
|
|
|
i = targets[:, 0] # image index |
|
|
|
|
_, counts = i.unique(return_counts=True) |
|
|
|
|
counts = counts.to(dtype=torch.int32) |
|
|
|
|
out = torch.zeros(batch_size, counts.max(), 5, device=self.device) |
|
|
|
|
for j in range(batch_size): |
|
|
|
|
matches = i == j |
|
|
|
|
n = matches.sum() |
|
|
|
|
if n: |
|
|
|
|
out[j, :n] = targets[matches, 1:] |
|
|
|
|
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor)) |
|
|
|
|
return out |
|
|
|
|
|
|
|
|
|
def bbox_decode(self, anchor_points, pred_dist): |
|
|
|
|
"""Decode predicted object bounding box coordinates from anchor points and distribution.""" |
|
|
|
|
if self.use_dfl: |
|
|
|
|
b, a, c = pred_dist.shape # batch, anchors, channels |
|
|
|
|
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype)) |
|
|
|
|
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype)) |
|
|
|
|
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2) |
|
|
|
|
return dist2bbox(pred_dist, anchor_points, xywh=False) |
|
|
|
|
|
|
|
|
|
def __call__(self, preds, batch): |
|
|
|
|
"""Calculate the sum of the loss for box, cls and dfl multiplied by batch size.""" |
|
|
|
|
loss = torch.zeros(3, device=self.device) # box, cls, dfl |
|
|
|
|
feats = preds[1] if isinstance(preds, tuple) else preds |
|
|
|
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( |
|
|
|
|
(self.reg_max * 4, self.nc), 1) |
|
|
|
|
|
|
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous() |
|
|
|
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous() |
|
|
|
|
|
|
|
|
|
dtype = pred_scores.dtype |
|
|
|
|
batch_size = pred_scores.shape[0] |
|
|
|
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) |
|
|
|
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) |
|
|
|
|
|
|
|
|
|
# targets |
|
|
|
|
targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1) |
|
|
|
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) |
|
|
|
|
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy |
|
|
|
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) |
|
|
|
|
|
|
|
|
|
# pboxes |
|
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) |
|
|
|
|
|
|
|
|
|
_, target_bboxes, target_scores, fg_mask, _ = self.assigner( |
|
|
|
|
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), |
|
|
|
|
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt) |
|
|
|
|
|
|
|
|
|
target_scores_sum = max(target_scores.sum(), 1) |
|
|
|
|
|
|
|
|
|
# cls loss |
|
|
|
|
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way |
|
|
|
|
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE |
|
|
|
|
|
|
|
|
|
# bbox loss |
|
|
|
|
if fg_mask.sum(): |
|
|
|
|
target_bboxes /= stride_tensor |
|
|
|
|
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, |
|
|
|
|
target_scores_sum, fg_mask) |
|
|
|
|
|
|
|
|
|
loss[0] *= self.hyp.box # box gain |
|
|
|
|
loss[1] *= self.hyp.cls # cls gain |
|
|
|
|
loss[2] *= self.hyp.dfl # dfl gain |
|
|
|
|
|
|
|
|
|
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Criterion class for computing training losses |
|
|
|
|
class v8SegmentationLoss(v8DetectionLoss): |
|
|
|
|
|
|
|
|
|
def __init__(self, model, overlap=True): # model must be de-paralleled |
|
|
|
|
super().__init__(model) |
|
|
|
|
self.nm = model.model[-1].nm # number of masks |
|
|
|
|
self.overlap = overlap |
|
|
|
|
|
|
|
|
|
def __call__(self, preds, batch): |
|
|
|
|
"""Calculate and return the loss for the YOLO model.""" |
|
|
|
|
loss = torch.zeros(4, device=self.device) # box, cls, dfl |
|
|
|
|
feats, pred_masks, proto = preds if len(preds) == 3 else preds[1] |
|
|
|
|
batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width |
|
|
|
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( |
|
|
|
|
(self.reg_max * 4, self.nc), 1) |
|
|
|
|
|
|
|
|
|
# b, grids, .. |
|
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous() |
|
|
|
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous() |
|
|
|
|
pred_masks = pred_masks.permute(0, 2, 1).contiguous() |
|
|
|
|
|
|
|
|
|
dtype = pred_scores.dtype |
|
|
|
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) |
|
|
|
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) |
|
|
|
|
|
|
|
|
|
# targets |
|
|
|
|
try: |
|
|
|
|
batch_idx = batch['batch_idx'].view(-1, 1) |
|
|
|
|
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1) |
|
|
|
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) |
|
|
|
|
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy |
|
|
|
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) |
|
|
|
|
except RuntimeError as e: |
|
|
|
|
raise TypeError('ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n' |
|
|
|
|
"This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, " |
|
|
|
|
"i.e. 'yolo train model=yolov8n-seg.pt data=coco128.yaml'.\nVerify your dataset is a " |
|
|
|
|
"correctly formatted 'segment' dataset using 'data=coco128-seg.yaml' " |
|
|
|
|
'as an example.\nSee https://docs.ultralytics.com/tasks/segment/ for help.') from e |
|
|
|
|
|
|
|
|
|
# pboxes |
|
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) |
|
|
|
|
|
|
|
|
|
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner( |
|
|
|
|
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), |
|
|
|
|
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt) |
|
|
|
|
|
|
|
|
|
target_scores_sum = max(target_scores.sum(), 1) |
|
|
|
|
|
|
|
|
|
# cls loss |
|
|
|
|
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way |
|
|
|
|
loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE |
|
|
|
|
|
|
|
|
|
if fg_mask.sum(): |
|
|
|
|
# bbox loss |
|
|
|
|
loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor, |
|
|
|
|
target_scores, target_scores_sum, fg_mask) |
|
|
|
|
# masks loss |
|
|
|
|
masks = batch['masks'].to(self.device).float() |
|
|
|
|
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample |
|
|
|
|
masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0] |
|
|
|
|
|
|
|
|
|
for i in range(batch_size): |
|
|
|
|
if fg_mask[i].sum(): |
|
|
|
|
mask_idx = target_gt_idx[i][fg_mask[i]] |
|
|
|
|
if self.overlap: |
|
|
|
|
gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0) |
|
|
|
|
else: |
|
|
|
|
gt_mask = masks[batch_idx.view(-1) == i][mask_idx] |
|
|
|
|
xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]] |
|
|
|
|
marea = xyxy2xywh(xyxyn)[:, 2:].prod(1) |
|
|
|
|
mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device) |
|
|
|
|
loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy, marea) # seg |
|
|
|
|
|
|
|
|
|
# WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove |
|
|
|
|
else: |
|
|
|
|
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss |
|
|
|
|
|
|
|
|
|
# WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove |
|
|
|
|
else: |
|
|
|
|
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss |
|
|
|
|
|
|
|
|
|
loss[0] *= self.hyp.box # box gain |
|
|
|
|
loss[1] *= self.hyp.box / batch_size # seg gain |
|
|
|
|
loss[2] *= self.hyp.cls # cls gain |
|
|
|
|
loss[3] *= self.hyp.dfl # dfl gain |
|
|
|
|
|
|
|
|
|
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) |
|
|
|
|
|
|
|
|
|
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area): |
|
|
|
|
"""Mask loss for one image.""" |
|
|
|
|
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80) |
|
|
|
|
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none') |
|
|
|
|
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Criterion class for computing training losses |
|
|
|
|
class v8PoseLoss(v8DetectionLoss): |
|
|
|
|
|
|
|
|
|
def __init__(self, model): # model must be de-paralleled |
|
|
|
|
super().__init__(model) |
|
|
|
|
self.kpt_shape = model.model[-1].kpt_shape |
|
|
|
|
self.bce_pose = nn.BCEWithLogitsLoss() |
|
|
|
|
is_pose = self.kpt_shape == [17, 3] |
|
|
|
|
nkpt = self.kpt_shape[0] # number of keypoints |
|
|
|
|
sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt |
|
|
|
|
self.keypoint_loss = KeypointLoss(sigmas=sigmas) |
|
|
|
|
|
|
|
|
|
def __call__(self, preds, batch): |
|
|
|
|
"""Calculate the total loss and detach it.""" |
|
|
|
|
loss = torch.zeros(5, device=self.device) # box, cls, dfl, kpt_location, kpt_visibility |
|
|
|
|
feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1] |
|
|
|
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( |
|
|
|
|
(self.reg_max * 4, self.nc), 1) |
|
|
|
|
|
|
|
|
|
# b, grids, .. |
|
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous() |
|
|
|
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous() |
|
|
|
|
pred_kpts = pred_kpts.permute(0, 2, 1).contiguous() |
|
|
|
|
|
|
|
|
|
dtype = pred_scores.dtype |
|
|
|
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) |
|
|
|
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) |
|
|
|
|
|
|
|
|
|
# targets |
|
|
|
|
batch_size = pred_scores.shape[0] |
|
|
|
|
batch_idx = batch['batch_idx'].view(-1, 1) |
|
|
|
|
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1) |
|
|
|
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) |
|
|
|
|
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy |
|
|
|
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) |
|
|
|
|
|
|
|
|
|
# pboxes |
|
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) |
|
|
|
|
pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3) |
|
|
|
|
|
|
|
|
|
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner( |
|
|
|
|
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), |
|
|
|
|
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt) |
|
|
|
|
|
|
|
|
|
target_scores_sum = max(target_scores.sum(), 1) |
|
|
|
|
|
|
|
|
|
# cls loss |
|
|
|
|
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way |
|
|
|
|
loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE |
|
|
|
|
|
|
|
|
|
# bbox loss |
|
|
|
|
if fg_mask.sum(): |
|
|
|
|
target_bboxes /= stride_tensor |
|
|
|
|
loss[0], loss[4] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, |
|
|
|
|
target_scores_sum, fg_mask) |
|
|
|
|
keypoints = batch['keypoints'].to(self.device).float().clone() |
|
|
|
|
keypoints[..., 0] *= imgsz[1] |
|
|
|
|
keypoints[..., 1] *= imgsz[0] |
|
|
|
|
for i in range(batch_size): |
|
|
|
|
if fg_mask[i].sum(): |
|
|
|
|
idx = target_gt_idx[i][fg_mask[i]] |
|
|
|
|
gt_kpt = keypoints[batch_idx.view(-1) == i][idx] # (n, 51) |
|
|
|
|
gt_kpt[..., 0] /= stride_tensor[fg_mask[i]] |
|
|
|
|
gt_kpt[..., 1] /= stride_tensor[fg_mask[i]] |
|
|
|
|
area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True) |
|
|
|
|
pred_kpt = pred_kpts[i][fg_mask[i]] |
|
|
|
|
kpt_mask = gt_kpt[..., 2] != 0 |
|
|
|
|
loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss |
|
|
|
|
# kpt_score loss |
|
|
|
|
if pred_kpt.shape[-1] == 3: |
|
|
|
|
loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss |
|
|
|
|
|
|
|
|
|
loss[0] *= self.hyp.box # box gain |
|
|
|
|
loss[1] *= self.hyp.pose / batch_size # pose gain |
|
|
|
|
loss[2] *= self.hyp.kobj / batch_size # kobj gain |
|
|
|
|
loss[3] *= self.hyp.cls # cls gain |
|
|
|
|
loss[4] *= self.hyp.dfl # dfl gain |
|
|
|
|
|
|
|
|
|
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) |
|
|
|
|
|
|
|
|
|
def kpts_decode(self, anchor_points, pred_kpts): |
|
|
|
|
"""Decodes predicted keypoints to image coordinates.""" |
|
|
|
|
y = pred_kpts.clone() |
|
|
|
|
y[..., :2] *= 2.0 |
|
|
|
|
y[..., 0] += anchor_points[:, [0]] - 0.5 |
|
|
|
|
y[..., 1] += anchor_points[:, [1]] - 0.5 |
|
|
|
|
return y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class v8ClassificationLoss: |
|
|
|
|
|
|
|
|
|
def __call__(self, preds, batch): |
|
|
|
|
"""Compute the classification loss between predictions and true labels.""" |
|
|
|
|
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / 64 # TODO: remove hardcoding |
|
|
|
|
loss_items = loss.detach() |
|
|
|
|
return loss, loss_items |
|
|
|
|