diff --git a/README.md b/README.md index cb29008492..0242ca3fb8 100644 --- a/README.md +++ b/README.md @@ -150,8 +150,8 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 | | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 | -- **mAPval** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset.
Reproduce by `yolo val segment data=coco-seg.yaml device=0` -- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu` +- **mAPval** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset.
Reproduce by `yolo val segment data=coco.yaml device=0` +- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo val segment data=coco.yaml batch=1 device=0|cpu` diff --git a/README.zh-CN.md b/README.zh-CN.md index aec15a2e1d..47cbaaaa99 100644 --- a/README.zh-CN.md +++ b/README.zh-CN.md @@ -150,8 +150,8 @@ YOLO11 [检测](https://docs.ultralytics.com/tasks/detect/)、[分割](https://d | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 | | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 | -- **mAPval** 值针对单模型单尺度在 [COCO val2017](https://cocodataset.org/) 数据集上进行。
复制命令 `yolo val segment data=coco-seg.yaml device=0` -- **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 COCO 验证图像上平均。
复制命令 `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu` +- **mAPval** 值针对单模型单尺度在 [COCO val2017](https://cocodataset.org/) 数据集上进行。
复制命令 `yolo val segment data=coco.yaml device=0` +- **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 COCO 验证图像上平均。
复制命令 `yolo val segment data=coco.yaml batch=1 device=0|cpu` diff --git a/docs/en/datasets/segment/coco.md b/docs/en/datasets/segment/coco.md index 5ff52f46a2..2dd8a0f53a 100644 --- a/docs/en/datasets/segment/coco.md +++ b/docs/en/datasets/segment/coco.md @@ -56,14 +56,14 @@ To train a YOLO11n-seg model on the COCO-Seg dataset for 100 [epochs](https://ww model = YOLO("yolo11n-seg.pt") # load a pretrained model (recommended for training) # Train the model - results = model.train(data="coco-seg.yaml", epochs=100, imgsz=640) + results = model.train(data="coco.yaml", epochs=100, imgsz=640) ``` === "CLI" ```bash # Start training from a pretrained *.pt model - yolo segment train data=coco-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640 + yolo segment train data=coco.yaml model=yolo11n-seg.pt epochs=100 imgsz=640 ``` ## Sample Images and Annotations @@ -118,14 +118,14 @@ To train a YOLO11n-seg model on the COCO-Seg dataset for 100 epochs with an imag model = YOLO("yolo11n-seg.pt") # load a pretrained model (recommended for training) # Train the model - results = model.train(data="coco-seg.yaml", epochs=100, imgsz=640) + results = model.train(data="coco.yaml", epochs=100, imgsz=640) ``` === "CLI" ```bash # Start training from a pretrained *.pt model - yolo segment train data=coco-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640 + yolo segment train data=coco.yaml model=yolo11n-seg.pt epochs=100 imgsz=640 ``` ### What are the key features of the COCO-Seg dataset? diff --git a/docs/en/tasks/segment.md b/docs/en/tasks/segment.md index c422c6fd62..33c19d9d3c 100644 --- a/docs/en/tasks/segment.md +++ b/docs/en/tasks/segment.md @@ -36,8 +36,8 @@ YOLO11 pretrained Segment models are shown here. Detect, Segment and Pose models {% include "macros/yolo-seg-perf.md" %} -- **mAPval** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset.
Reproduce by `yolo val segment data=coco-seg.yaml device=0` -- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu` +- **mAPval** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset.
Reproduce by `yolo val segment data=coco.yaml device=0` +- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo val segment data=coco.yaml batch=1 device=0|cpu` ## Train