Improved CLI error reporting for users (#458)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>pull/470/head
parent
db26ccba94
commit
cc3c774bde
6 changed files with 273 additions and 113 deletions
@ -1,85 +1,196 @@ |
||||
If you want to train, validate or run inference on models and don't need to make any modifications to the code, using |
||||
YOLO command line interface is the easiest way to get started. |
||||
The YOLO Command Line Interface (CLI) is the easiest way to get started training, validating, predicting and exporting |
||||
YOLOv8 models. |
||||
|
||||
!!! tip "Syntax" |
||||
The `yolo` command is used for all actions: |
||||
|
||||
```bash |
||||
yolo task=detect mode=train model=yolov8n.yaml args... |
||||
classify predict yolov8n-cls.yaml args... |
||||
segment val yolov8n-seg.yaml args... |
||||
export yolov8n.pt format=onnx args... |
||||
``` |
||||
!!! example "" |
||||
|
||||
The default arguments can be overridden directly by passing custom `arg=val` covered in the next section. You can run |
||||
any supported task by setting `task` and `mode` in CLI. |
||||
=== "Training" |
||||
=== "CLI" |
||||
|
||||
```bash |
||||
yolo TASK MODE ARGS |
||||
``` |
||||
|
||||
| | `task` | snippet | |
||||
|------------------|------------|------------------------------------------------------------| |
||||
| Detection | `detect` | <pre><code>yolo detect train </code></pre> | |
||||
| Instance Segment | `segment` | <pre><code>yolo segment train </code></pre> | |
||||
| Classification | `classify` | <pre><code>yolo classify train </code></pre> | |
||||
Where: |
||||
|
||||
=== "Prediction" |
||||
- `TASK` (optional) is one of `[detect, segment, classify]`. If it is not passed explicitly YOLOv8 will try to guess |
||||
the `TASK` from the model type. |
||||
- `MODE` (required) is one of `[train, val, predict, export]` |
||||
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. |
||||
For a full list of available `ARGS` see the [Configuration](config.md) page. |
||||
|
||||
| | `task` | snippet | |
||||
|------------------|------------|--------------------------------------------------------------| |
||||
| Detection | `detect` | <pre><code>yolo detect predict </code></pre> | |
||||
| Instance Segment | `segment` | <pre><code>yolo segment predict </code></pre> | |
||||
| Classification | `classify` | <pre><code>yolo classify predict </code></pre> | |
||||
!!! note "" |
||||
|
||||
=== "Validation" |
||||
<b>Note:</b> Arguments MUST be passed as `arg=val` with an equals sign and a space between `arg=val` pairs |
||||
|
||||
| | `task` | snippet | |
||||
|------------------|------------|-----------------------------------------------------------| |
||||
| Detection | `detect` | <pre><code>yolo detect val </code></pre> | |
||||
| Instance Segment | `segment` | <pre><code>yolo segment val </code></pre> | |
||||
| Classification | `classify` | <pre><code>yolo classify val </code></pre> | |
||||
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` ✅ |
||||
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` ❌ |
||||
- `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` ❌ |
||||
|
||||
!!! note "" |
||||
## Train |
||||
|
||||
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see |
||||
the [Configuration](config.md) page. |
||||
|
||||
!!! example "" |
||||
|
||||
=== "CLI" |
||||
|
||||
```bash |
||||
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640 |
||||
``` |
||||
|
||||
=== "Python" |
||||
|
||||
```python |
||||
from ultralytics import YOLO |
||||
|
||||
# Load a model |
||||
model = YOLO("yolov8n.yaml") # build a new model from scratch |
||||
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training) |
||||
|
||||
# Train the model |
||||
results = model.train(data="coco128.yaml", epochs=100, imgsz=640) |
||||
``` |
||||
|
||||
## Val |
||||
|
||||
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's |
||||
training `data` and arguments as model attributes. |
||||
|
||||
!!! example "" |
||||
|
||||
=== "CLI" |
||||
|
||||
```bash |
||||
yolo detect val model=yolov8n.pt # val official model |
||||
yolo detect val model=path/to/best.pt # val custom model |
||||
``` |
||||
|
||||
=== "Python" |
||||
|
||||
```python |
||||
from ultralytics import YOLO |
||||
|
||||
# Load a model |
||||
model = YOLO("yolov8n.pt") # load an official model |
||||
model = YOLO("path/to/best.pt") # load a custom model |
||||
|
||||
# Validate the model |
||||
results = model.val() # no arguments needed, dataset and settings remembered |
||||
``` |
||||
|
||||
## Predict |
||||
|
||||
<b>Note:</b> The arguments don't require `'--'` prefix. These are reserved for special commands covered later |
||||
Use a trained YOLOv8n model to run predictions on images. |
||||
|
||||
!!! example "" |
||||
|
||||
=== "CLI" |
||||
|
||||
```bash |
||||
yolo detect predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model |
||||
yolo detect predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model |
||||
``` |
||||
|
||||
=== "Python" |
||||
|
||||
```python |
||||
from ultralytics import YOLO |
||||
|
||||
# Load a model |
||||
model = YOLO("yolov8n.pt") # load an official model |
||||
model = YOLO("path/to/best.pt") # load a custom model |
||||
|
||||
# Predict with the model |
||||
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image |
||||
``` |
||||
|
||||
## Export |
||||
|
||||
Export a YOLOv8n model to a different format like ONNX, CoreML, etc. |
||||
|
||||
!!! example "" |
||||
|
||||
=== "CLI" |
||||
|
||||
```bash |
||||
yolo export model=yolov8n.pt format=onnx # export official model |
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model |
||||
``` |
||||
|
||||
=== "Python" |
||||
|
||||
```python |
||||
from ultralytics import YOLO |
||||
|
||||
# Load a model |
||||
model = YOLO("yolov8n.pt") # load an official model |
||||
model = YOLO("path/to/best.pt") # load a custom trained |
||||
|
||||
# Export the model |
||||
model.export(format="onnx") |
||||
``` |
||||
|
||||
Available YOLOv8 export formats include: |
||||
|
||||
| Format | `format=` | Model | |
||||
|----------------------------------------------------------------------------|--------------------|---------------------------| |
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | |
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | |
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | |
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | |
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | |
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` | |
||||
| [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | |
||||
| [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | |
||||
| [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | |
||||
| [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | |
||||
| [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | |
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | |
||||
|
||||
--- |
||||
|
||||
## Overriding default config arguments |
||||
## Overriding default arguments |
||||
|
||||
Default arguments can be overriden by simply passing them as arguments in the CLI. |
||||
Default arguments can be overriden by simply passing them as arguments in the CLI in `arg=value` pairs. |
||||
|
||||
!!! tip "" |
||||
|
||||
=== "Syntax" |
||||
=== "Example 1" |
||||
Train a detection model for `10 epochs` with `learning_rate` of `0.01` |
||||
```bash |
||||
yolo task mode arg=val... |
||||
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 |
||||
``` |
||||
|
||||
=== "Example" |
||||
Perform detection training for `10 epochs` with `learning_rate` of `0.01` |
||||
=== "Example 2" |
||||
Predict a YouTube video using a pretrained segmentation model at image size 320: |
||||
```bash |
||||
yolo detect train epochs=10 lr0=0.01 |
||||
yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320 |
||||
``` |
||||
|
||||
=== "Example 3" |
||||
Validate a pretrained detection model at batch-size 1 and image size 640: |
||||
```bash |
||||
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 |
||||
``` |
||||
|
||||
--- |
||||
|
||||
## Overriding default config file |
||||
|
||||
You can override config file entirely by passing a new file. You can create a copy of default config file in your |
||||
current working dir as follows: |
||||
You can override the `default.yaml` config file entirely by passing a new file with the `cfg` arguments, |
||||
i.e. `cfg=custom.yaml`. |
||||
|
||||
```bash |
||||
yolo copy-config |
||||
``` |
||||
To do this first create a copy of `default.yaml` in your current working dir with the `yolo copy-config` command. |
||||
|
||||
You can then use `cfg=default_copy.yaml` command to pass the new config file along with any addition args: |
||||
This will create `default_copy.yaml`, which you can then pass as `cfg=default_copy.yaml` along with any additional args, |
||||
like `imgsz=320` in this example: |
||||
|
||||
```bash |
||||
yolo cfg=default_copy.yaml args... |
||||
``` |
||||
!!! example "" |
||||
|
||||
??? example |
||||
|
||||
=== "Command" |
||||
=== "CLI" |
||||
```bash |
||||
yolo copy-config |
||||
yolo cfg=default_copy.yaml args... |
||||
``` |
||||
yolo cfg=default_copy.yaml imgsz=320 |
||||
``` |
@ -1,9 +1,9 @@ |
||||
# Ultralytics YOLO 🚀, GPL-3.0 license |
||||
|
||||
__version__ = "8.0.7" |
||||
__version__ = "8.0.8" |
||||
|
||||
from ultralytics.hub import checks |
||||
from ultralytics.yolo.engine.model import YOLO |
||||
from ultralytics.yolo.utils import ops |
||||
from ultralytics.yolo.utils.checks import check_yolo as checks |
||||
|
||||
__all__ = ["__version__", "YOLO", "hub", "checks"] # allow simpler import |
||||
|
Loading…
Reference in new issue