Add NVIDIA Jetpack4 and Jetpack5 Docker Images (#13100)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Lakshantha <lakshantha@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>pull/13499/head
parent
05be0c54e5
commit
ca82d41ec8
5 changed files with 109 additions and 23 deletions
@ -0,0 +1,64 @@ |
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license |
||||
# Builds ultralytics/ultralytics:jetson-jetpack4 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics |
||||
# Supports JetPack4.x for YOLOv8 on Jetson Nano, TX2, Xavier NX, AGX Xavier |
||||
|
||||
# Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-cuda |
||||
FROM nvcr.io/nvidia/l4t-cuda:10.2.460-runtime |
||||
|
||||
# Set environment variables |
||||
ENV APP_HOME /usr/src/ultralytics |
||||
|
||||
# Downloads to user config dir |
||||
ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \ |
||||
https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \ |
||||
/root/.config/Ultralytics/ |
||||
|
||||
# Add NVIDIA repositories for TensorRT dependencies |
||||
RUN wget -q -O - https://repo.download.nvidia.com/jetson/jetson-ota-public.asc | apt-key add - && \ |
||||
echo "deb https://repo.download.nvidia.com/jetson/common r32.7 main" > /etc/apt/sources.list.d/nvidia-l4t-apt-source.list && \ |
||||
echo "deb https://repo.download.nvidia.com/jetson/t194 r32.7 main" >> /etc/apt/sources.list.d/nvidia-l4t-apt-source.list |
||||
|
||||
# Install dependencies |
||||
RUN apt update && \ |
||||
apt install --no-install-recommends -y git python3.8 python3.8-dev python3-pip python3-libnvinfer libopenmpi-dev libopenblas-base libomp-dev gcc |
||||
|
||||
# Create symbolic links for python3.8 and pip3 |
||||
RUN ln -sf /usr/bin/python3.8 /usr/bin/python3 |
||||
RUN ln -s /usr/bin/pip3 /usr/bin/pip |
||||
|
||||
# Create working directory |
||||
WORKDIR $APP_HOME |
||||
|
||||
# Copy contents and assign permissions |
||||
COPY . $APP_HOME |
||||
RUN chown -R root:root $APP_HOME |
||||
ADD https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt $APP_HOME |
||||
|
||||
# Download onnxruntime-gpu, TensorRT, PyTorch and Torchvision |
||||
# Other versions can be seen in https://elinux.org/Jetson_Zoo and https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048 |
||||
ADD https://nvidia.box.com/shared/static/gjqofg7rkg97z3gc8jeyup6t8n9j8xjw.whl onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl |
||||
ADD https://forums.developer.nvidia.com/uploads/short-url/hASzFOm9YsJx6VVFrDW1g44CMmv.whl tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl |
||||
ADD https://github.com/ultralytics/yolov5/releases/download/v1.0/torch-1.11.0a0+gitbc2c6ed-cp38-cp38-linux_aarch64.whl \ |
||||
torch-1.11.0a0+gitbc2c6ed-cp38-cp38-linux_aarch64.whl |
||||
ADD https://github.com/ultralytics/yolov5/releases/download/v1.0/torchvision-0.12.0a0+9b5a3fe-cp38-cp38-linux_aarch64.whl \ |
||||
torchvision-0.12.0a0+9b5a3fe-cp38-cp38-linux_aarch64.whl |
||||
|
||||
# Install pip packages |
||||
RUN python3 -m pip install --upgrade pip wheel |
||||
RUN pip install onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl \ |
||||
torch-1.11.0a0+gitbc2c6ed-cp38-cp38-linux_aarch64.whl torchvision-0.12.0a0+9b5a3fe-cp38-cp38-linux_aarch64.whl |
||||
RUN pip install --no-cache-dir -e ".[export]" |
||||
|
||||
# Usage Examples ------------------------------------------------------------------------------------------------------- |
||||
|
||||
# Build and Push |
||||
# t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson-jetpack4 -t $t . && sudo docker push $t |
||||
|
||||
# Run |
||||
# t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker run -it --ipc=host $t |
||||
|
||||
# Pull and Run |
||||
# t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host $t |
||||
|
||||
# Pull and Run with NVIDIA runtime |
||||
# t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t |
Loading…
Reference in new issue