`ultralytics 8.0.160` Classify dataset scanning and caching (#4502)

pull/4531/head v8.0.160
Glenn Jocher 1 year ago committed by GitHub
parent b890e1c937
commit c7ceb84fb6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      ultralytics/__init__.py
  2. 94
      ultralytics/data/dataset.py
  3. 25
      ultralytics/data/utils.py
  4. 2
      ultralytics/models/yolo/classify/train.py
  5. 2
      ultralytics/models/yolo/classify/val.py

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.159'
__version__ = '8.0.160'
from ultralytics.models import RTDETR, SAM, YOLO
from ultralytics.models.fastsam import FastSAM

@ -1,5 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
@ -10,11 +10,14 @@ import torch
import torchvision
from tqdm import tqdm
from ultralytics.utils import LOCAL_RANK, NUM_THREADS, TQDM_BAR_FORMAT, is_dir_writeable
from ultralytics.utils import LOCAL_RANK, NUM_THREADS, TQDM_BAR_FORMAT, colorstr, is_dir_writeable
from .augment import Compose, Format, Instances, LetterBox, classify_albumentations, classify_transforms, v8_transforms
from .base import BaseDataset
from .utils import HELP_URL, LOGGER, get_hash, img2label_paths, verify_image_label
from .utils import HELP_URL, LOGGER, get_hash, img2label_paths, verify_image, verify_image_label
# Ultralytics dataset *.cache version, >= 1.0.0 for YOLOv8
DATASET_CACHE_VERSION = '1.0.2'
class YOLODataset(BaseDataset):
@ -29,7 +32,6 @@ class YOLODataset(BaseDataset):
Returns:
(torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model.
"""
cache_version = '1.0.2' # dataset labels *.cache version, >= 1.0.0 for YOLOv8
def __init__(self, *args, data=None, use_segments=False, use_keypoints=False, **kwargs):
self.use_segments = use_segments
@ -87,15 +89,7 @@ class YOLODataset(BaseDataset):
x['hash'] = get_hash(self.label_files + self.im_files)
x['results'] = nf, nm, ne, nc, len(self.im_files)
x['msgs'] = msgs # warnings
x['version'] = self.cache_version # cache version
if is_dir_writeable(path.parent):
if path.exists():
path.unlink() # remove *.cache file if exists
np.save(str(path), x) # save cache for next time
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
LOGGER.info(f'{self.prefix}New cache created: {path}')
else:
LOGGER.warning(f'{self.prefix}WARNING ⚠ Cache directory {path.parent} is not writeable, cache not saved.')
save_dataset_cache_file(self.prefix, path, x)
return x
def get_labels(self):
@ -103,11 +97,8 @@ class YOLODataset(BaseDataset):
self.label_files = img2label_paths(self.im_files)
cache_path = Path(self.label_files[0]).parent.with_suffix('.cache')
try:
import gc
gc.disable() # reduce pickle load time https://github.com/ultralytics/ultralytics/pull/1585
cache, exists = np.load(str(cache_path), allow_pickle=True).item(), True # load dict
gc.enable()
assert cache['version'] == self.cache_version # matches current version
cache, exists = load_dataset_cache_file(cache_path), True # attempt to load a *.cache file
assert cache['version'] == DATASET_CACHE_VERSION # matches current version
assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash
except (FileNotFoundError, AssertionError, AttributeError):
cache, exists = self.cache_labels(cache_path), False # run cache ops
@ -116,7 +107,7 @@ class YOLODataset(BaseDataset):
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
if exists and LOCAL_RANK in (-1, 0):
d = f'Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt'
tqdm(None, desc=self.prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results
tqdm(None, desc=self.prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display results
if cache['msgs']:
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
if nf == 0: # number of labels found
@ -216,7 +207,7 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
album_transforms (callable, optional): Albumentations transforms applied to the dataset if augment is True.
"""
def __init__(self, root, args, augment=False, cache=False):
def __init__(self, root, args, augment=False, cache=False, prefix=''):
"""
Initialize YOLO object with root, image size, augmentations, and cache settings.
@ -229,8 +220,10 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
super().__init__(root=root)
if augment and args.fraction < 1.0: # reduce training fraction
self.samples = self.samples[:round(len(self.samples) * args.fraction)]
self.prefix = colorstr(f'{prefix}: ') if prefix else ''
self.cache_ram = cache is True or cache == 'ram'
self.cache_disk = cache == 'disk'
self.samples = self.verify_images() # filter out bad images
self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im
self.torch_transforms = classify_transforms(args.imgsz)
self.album_transforms = classify_albumentations(
@ -266,6 +259,67 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
def __len__(self) -> int:
return len(self.samples)
def verify_images(self):
"""Verify all images in dataset."""
desc = f'{self.prefix}Scanning {self.root}...'
path = Path(self.root).with_suffix('.cache') # *.cache file path
with contextlib.suppress(FileNotFoundError, AssertionError, AttributeError):
cache = load_dataset_cache_file(path) # attempt to load a *.cache file
assert cache['version'] == DATASET_CACHE_VERSION # matches current version
assert cache['hash'] == get_hash([x[0] for x in self.samples]) # identical hash
nf, nc, n, samples = cache.pop('results') # found, missing, empty, corrupt, total
if LOCAL_RANK in (-1, 0):
d = f'{desc} {nf} images, {nc} corrupt'
tqdm(None, desc=d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT)
if cache['msgs']:
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
return samples
# Run scan if *.cache retrieval failed
nf, nc, msgs, samples, x = 0, 0, [], [], {}
with ThreadPool(NUM_THREADS) as pool:
results = pool.imap(func=verify_image, iterable=zip([x[0] for x in self.samples], repeat(self.prefix)))
pbar = tqdm(results, desc=desc, total=len(self.samples), bar_format=TQDM_BAR_FORMAT)
for im_file, nf_f, nc_f, msg in pbar:
if nf_f:
samples.append((im_file, nf))
if msg:
msgs.append(msg)
nf += nf_f
nc += nc_f
pbar.desc = f'{desc} {nf} images, {nc} corrupt'
pbar.close()
if msgs:
LOGGER.info('\n'.join(msgs))
x['hash'] = get_hash([x[0] for x in self.samples])
x['results'] = nf, nc, len(samples), samples
x['msgs'] = msgs # warnings
save_dataset_cache_file(self.prefix, path, x)
return samples
def load_dataset_cache_file(path):
"""Load an Ultralytics *.cache dictionary from path."""
import gc
gc.disable() # reduce pickle load time https://github.com/ultralytics/ultralytics/pull/1585
cache = np.load(str(path), allow_pickle=True).item() # load dict
gc.enable()
return cache
def save_dataset_cache_file(prefix, path, x):
"""Save an Ultralytics dataset *.cache dictionary x to path."""
x['version'] = DATASET_CACHE_VERSION # add cache version
if is_dir_writeable(path.parent):
if path.exists():
path.unlink() # remove *.cache file if exists
np.save(str(path), x) # save cache for next time
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
LOGGER.info(f'{prefix}New cache created: {path}')
else:
LOGGER.warning(f'{prefix}WARNING ⚠ Cache directory {path.parent} is not writeable, cache not saved.')
# TODO: support semantic segmentation
class SemanticDataset(BaseDataset):

@ -57,6 +57,31 @@ def exif_size(img: Image.Image):
return s
def verify_image(args):
"""Verify one image."""
im_file, prefix = args
# Number (found, corrupt), message
nf, nc, msg = 0, 0, ''
try:
im = Image.open(im_file)
im.verify() # PIL verify
shape = exif_size(im) # image size
shape = (shape[1], shape[0]) # hw
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
if im.format.lower() in ('jpg', 'jpeg'):
with open(im_file, 'rb') as f:
f.seek(-2, 2)
if f.read() != b'\xff\xd9': # corrupt JPEG
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
msg = f'{prefix}WARNING ⚠ {im_file}: corrupt JPEG restored and saved'
nf = 1
except Exception as e:
nc = 1
msg = f'{prefix}WARNING ⚠ {im_file}: ignoring corrupt image/label: {e}'
return im_file, nf, nc, msg
def verify_image_label(args):
"""Verify one image-label pair."""
im_file, lb_file, prefix, keypoint, num_cls, nkpt, ndim = args

@ -79,7 +79,7 @@ class ClassificationTrainer(BaseTrainer):
return ckpt
def build_dataset(self, img_path, mode='train', batch=None):
return ClassificationDataset(root=img_path, args=self.args, augment=mode == 'train')
return ClassificationDataset(root=img_path, args=self.args, augment=mode == 'train', prefix=mode)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
"""Returns PyTorch DataLoader with transforms to preprocess images for inference."""

@ -77,7 +77,7 @@ class ClassificationValidator(BaseValidator):
return self.metrics.results_dict
def build_dataset(self, img_path):
return ClassificationDataset(root=img_path, args=self.args, augment=False)
return ClassificationDataset(root=img_path, args=self.args, augment=False, prefix=self.args.split)
def get_dataloader(self, dataset_path, batch_size):
"""Builds and returns a data loader for classification tasks with given parameters."""

Loading…
Cancel
Save