diff --git a/docs/en/macros/predict-args.md b/docs/en/macros/predict-args.md index f977a30a2f..2bb669eb7b 100644 --- a/docs/en/macros/predict-args.md +++ b/docs/en/macros/predict-args.md @@ -1,17 +1,17 @@ -| Argument | Type | Default | Description | -| --------------- | -------------- | ---------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `source` | `str` | `'ultralytics/assets'` | Specifies the data source for inference. Can be an image path, video file, directory, URL, or device ID for live feeds. Supports a wide range of formats and sources, enabling flexible application across different types of input. | -| `conf` | `float` | `0.25` | Sets the minimum confidence threshold for detections. Objects detected with confidence below this threshold will be disregarded. Adjusting this value can help reduce false positives. | -| `iou` | `float` | `0.7` | [Intersection Over Union](https://www.ultralytics.com/glossary/intersection-over-union-iou) (IoU) threshold for Non-Maximum Suppression (NMS). Lower values result in fewer detections by eliminating overlapping boxes, useful for reducing duplicates. | -| `imgsz` | `int or tuple` | `640` | Defines the image size for inference. Can be a single integer `640` for square resizing or a (height, width) tuple. Proper sizing can improve detection [accuracy](https://www.ultralytics.com/glossary/accuracy) and processing speed. | -| `half` | `bool` | `False` | Enables half-[precision](https://www.ultralytics.com/glossary/precision) (FP16) inference, which can speed up model inference on supported GPUs with minimal impact on accuracy. | -| `device` | `str` | `None` | Specifies the device for inference (e.g., `cpu`, `cuda:0` or `0`). Allows users to select between CPU, a specific GPU, or other compute devices for model execution. | -| `max_det` | `int` | `300` | Maximum number of detections allowed per image. Limits the total number of objects the model can detect in a single inference, preventing excessive outputs in dense scenes. | -| `vid_stride` | `int` | `1` | Frame stride for video inputs. Allows skipping frames in videos to speed up processing at the cost of temporal resolution. A value of 1 processes every frame, higher values skip frames. | -| `stream_buffer` | `bool` | `False` | Determines if all frames should be buffered when processing video streams (`True`), or if the model should return the most recent frame (`False`). Useful for real-time applications. | -| `visualize` | `bool` | `False` | Activates visualization of model features during inference, providing insights into what the model is "seeing". Useful for debugging and model interpretation. | -| `augment` | `bool` | `False` | Enables test-time augmentation (TTA) for predictions, potentially improving detection robustness at the cost of inference speed. | -| `agnostic_nms` | `bool` | `False` | Enables class-agnostic Non-Maximum Suppression (NMS), which merges overlapping boxes of different classes. Useful in multi-class detection scenarios where class overlap is common. | -| `classes` | `list[int]` | `None` | Filters predictions to a set of class IDs. Only detections belonging to the specified classes will be returned. Useful for focusing on relevant objects in multi-class detection tasks. | -| `retina_masks` | `bool` | `False` | Uses high-resolution segmentation masks if available in the model. This can enhance mask quality for segmentation tasks, providing finer detail. | -| `embed` | `list[int]` | `None` | Specifies the layers from which to extract feature vectors or [embeddings](https://www.ultralytics.com/glossary/embeddings). Useful for downstream tasks like clustering or similarity search. | +| Argument | Type | Default | Description | +| --------------- | -------------- | ---------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `source` | `str` | `'ultralytics/assets'` | Specifies the data source for inference. Can be an image path, video file, directory, URL, or device ID for live feeds. Supports a wide range of formats and sources, enabling flexible application across [different types of input](/modes/predict.md/#inference-sources). | +| `conf` | `float` | `0.25` | Sets the minimum confidence threshold for detections. Objects detected with confidence below this threshold will be disregarded. Adjusting this value can help reduce false positives. | +| `iou` | `float` | `0.7` | [Intersection Over Union](https://www.ultralytics.com/glossary/intersection-over-union-iou) (IoU) threshold for Non-Maximum Suppression (NMS). Lower values result in fewer detections by eliminating overlapping boxes, useful for reducing duplicates. | +| `imgsz` | `int or tuple` | `640` | Defines the image size for inference. Can be a single integer `640` for square resizing or a (height, width) tuple. Proper sizing can improve detection [accuracy](https://www.ultralytics.com/glossary/accuracy) and processing speed. | +| `half` | `bool` | `False` | Enables half-[precision](https://www.ultralytics.com/glossary/precision) (FP16) inference, which can speed up model inference on supported GPUs with minimal impact on accuracy. | +| `device` | `str` | `None` | Specifies the device for inference (e.g., `cpu`, `cuda:0` or `0`). Allows users to select between CPU, a specific GPU, or other compute devices for model execution. | +| `max_det` | `int` | `300` | Maximum number of detections allowed per image. Limits the total number of objects the model can detect in a single inference, preventing excessive outputs in dense scenes. | +| `vid_stride` | `int` | `1` | Frame stride for video inputs. Allows skipping frames in videos to speed up processing at the cost of temporal resolution. A value of 1 processes every frame, higher values skip frames. | +| `stream_buffer` | `bool` | `False` | Determines the frame processing strategy for video streams. If `False` processing only the most recent frame, minimizing latency (optimized for real-time applications). If `True' processes all frames in order, ensuring no frames are skipped. | +| `visualize` | `bool` | `False` | Activates visualization of model features during inference, providing insights into what the model is "seeing". Useful for debugging and model interpretation. | +| `augment` | `bool` | `False` | Enables test-time augmentation (TTA) for predictions, potentially improving detection robustness at the cost of inference speed. | +| `agnostic_nms` | `bool` | `False` | Enables class-agnostic Non-Maximum Suppression (NMS), which merges overlapping boxes of different classes. Useful in multi-class detection scenarios where class overlap is common. | +| `classes` | `list[int]` | `None` | Filters predictions to a set of class IDs. Only detections belonging to the specified classes will be returned. Useful for focusing on relevant objects in multi-class detection tasks. | +| `retina_masks` | `bool` | `False` | Uses high-resolution segmentation masks if available in the model. This can enhance mask quality for segmentation tasks, providing finer detail. | +| `embed` | `list[int]` | `None` | Specifies the layers from which to extract feature vectors or [embeddings](https://www.ultralytics.com/glossary/embeddings). Useful for downstream tasks like clustering or similarity search. | diff --git a/ultralytics/engine/exporter.py b/ultralytics/engine/exporter.py index c2f0f6c625..73ee545f33 100644 --- a/ultralytics/engine/exporter.py +++ b/ultralytics/engine/exporter.py @@ -183,9 +183,9 @@ class Exporter: # Get the closest match if format is invalid matches = difflib.get_close_matches(fmt, fmts, n=1, cutoff=0.6) # 60% similarity required to match - if closest_match: + if matches: LOGGER.warning(f"WARNING ⚠️ Invalid export format='{fmt}', updating to format='{matches[0]}'") - fmt = closest_match[0] + fmt = matches[0] else: raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}") flags = [x == fmt for x in fmts]