Add YOLOv5 dataset yamls (#207)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>pull/211/head
parent
e371e81aa0
commit
c7629e93bd
14 changed files with 2018 additions and 39 deletions
@ -0,0 +1,74 @@ |
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license |
||||||
|
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI |
||||||
|
# Example usage: python train.py --data Argoverse.yaml |
||||||
|
# parent |
||||||
|
# ├── yolov5 |
||||||
|
# └── datasets |
||||||
|
# └── Argoverse ← downloads here (31.3 GB) |
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
||||||
|
path: ../datasets/Argoverse # dataset root dir |
||||||
|
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images |
||||||
|
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images |
||||||
|
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview |
||||||
|
|
||||||
|
# Classes |
||||||
|
names: |
||||||
|
0: person |
||||||
|
1: bicycle |
||||||
|
2: car |
||||||
|
3: motorcycle |
||||||
|
4: bus |
||||||
|
5: truck |
||||||
|
6: traffic_light |
||||||
|
7: stop_sign |
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
||||||
|
download: | |
||||||
|
import json |
||||||
|
|
||||||
|
from tqdm import tqdm |
||||||
|
from utils.general import download, Path |
||||||
|
|
||||||
|
|
||||||
|
def argoverse2yolo(set): |
||||||
|
labels = {} |
||||||
|
a = json.load(open(set, "rb")) |
||||||
|
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."): |
||||||
|
img_id = annot['image_id'] |
||||||
|
img_name = a['images'][img_id]['name'] |
||||||
|
img_label_name = f'{img_name[:-3]}txt' |
||||||
|
|
||||||
|
cls = annot['category_id'] # instance class id |
||||||
|
x_center, y_center, width, height = annot['bbox'] |
||||||
|
x_center = (x_center + width / 2) / 1920.0 # offset and scale |
||||||
|
y_center = (y_center + height / 2) / 1200.0 # offset and scale |
||||||
|
width /= 1920.0 # scale |
||||||
|
height /= 1200.0 # scale |
||||||
|
|
||||||
|
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']] |
||||||
|
if not img_dir.exists(): |
||||||
|
img_dir.mkdir(parents=True, exist_ok=True) |
||||||
|
|
||||||
|
k = str(img_dir / img_label_name) |
||||||
|
if k not in labels: |
||||||
|
labels[k] = [] |
||||||
|
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n") |
||||||
|
|
||||||
|
for k in labels: |
||||||
|
with open(k, "w") as f: |
||||||
|
f.writelines(labels[k]) |
||||||
|
|
||||||
|
|
||||||
|
# Download |
||||||
|
dir = Path(yaml['path']) # dataset root dir |
||||||
|
urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip'] |
||||||
|
download(urls, dir=dir, delete=False) |
||||||
|
|
||||||
|
# Convert |
||||||
|
annotations_dir = 'Argoverse-HD/annotations/' |
||||||
|
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images' |
||||||
|
for d in "train.json", "val.json": |
||||||
|
argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels |
@ -0,0 +1,54 @@ |
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license |
||||||
|
# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan |
||||||
|
# Example usage: python train.py --data GlobalWheat2020.yaml |
||||||
|
# parent |
||||||
|
# ├── yolov5 |
||||||
|
# └── datasets |
||||||
|
# └── GlobalWheat2020 ← downloads here (7.0 GB) |
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
||||||
|
path: ../datasets/GlobalWheat2020 # dataset root dir |
||||||
|
train: # train images (relative to 'path') 3422 images |
||||||
|
- images/arvalis_1 |
||||||
|
- images/arvalis_2 |
||||||
|
- images/arvalis_3 |
||||||
|
- images/ethz_1 |
||||||
|
- images/rres_1 |
||||||
|
- images/inrae_1 |
||||||
|
- images/usask_1 |
||||||
|
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1) |
||||||
|
- images/ethz_1 |
||||||
|
test: # test images (optional) 1276 images |
||||||
|
- images/utokyo_1 |
||||||
|
- images/utokyo_2 |
||||||
|
- images/nau_1 |
||||||
|
- images/uq_1 |
||||||
|
|
||||||
|
# Classes |
||||||
|
names: |
||||||
|
0: wheat_head |
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
||||||
|
download: | |
||||||
|
from utils.general import download, Path |
||||||
|
|
||||||
|
|
||||||
|
# Download |
||||||
|
dir = Path(yaml['path']) # dataset root dir |
||||||
|
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip', |
||||||
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip'] |
||||||
|
download(urls, dir=dir) |
||||||
|
|
||||||
|
# Make Directories |
||||||
|
for p in 'annotations', 'images', 'labels': |
||||||
|
(dir / p).mkdir(parents=True, exist_ok=True) |
||||||
|
|
||||||
|
# Move |
||||||
|
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \ |
||||||
|
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1': |
||||||
|
(dir / p).rename(dir / 'images' / p) # move to /images |
||||||
|
f = (dir / p).with_suffix('.json') # json file |
||||||
|
if f.exists(): |
||||||
|
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,438 @@ |
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license |
||||||
|
# Objects365 dataset https://www.objects365.org/ by Megvii |
||||||
|
# Example usage: python train.py --data Objects365.yaml |
||||||
|
# parent |
||||||
|
# ├── yolov5 |
||||||
|
# └── datasets |
||||||
|
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips) |
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
||||||
|
path: ../datasets/Objects365 # dataset root dir |
||||||
|
train: images/train # train images (relative to 'path') 1742289 images |
||||||
|
val: images/val # val images (relative to 'path') 80000 images |
||||||
|
test: # test images (optional) |
||||||
|
|
||||||
|
# Classes |
||||||
|
names: |
||||||
|
0: Person |
||||||
|
1: Sneakers |
||||||
|
2: Chair |
||||||
|
3: Other Shoes |
||||||
|
4: Hat |
||||||
|
5: Car |
||||||
|
6: Lamp |
||||||
|
7: Glasses |
||||||
|
8: Bottle |
||||||
|
9: Desk |
||||||
|
10: Cup |
||||||
|
11: Street Lights |
||||||
|
12: Cabinet/shelf |
||||||
|
13: Handbag/Satchel |
||||||
|
14: Bracelet |
||||||
|
15: Plate |
||||||
|
16: Picture/Frame |
||||||
|
17: Helmet |
||||||
|
18: Book |
||||||
|
19: Gloves |
||||||
|
20: Storage box |
||||||
|
21: Boat |
||||||
|
22: Leather Shoes |
||||||
|
23: Flower |
||||||
|
24: Bench |
||||||
|
25: Potted Plant |
||||||
|
26: Bowl/Basin |
||||||
|
27: Flag |
||||||
|
28: Pillow |
||||||
|
29: Boots |
||||||
|
30: Vase |
||||||
|
31: Microphone |
||||||
|
32: Necklace |
||||||
|
33: Ring |
||||||
|
34: SUV |
||||||
|
35: Wine Glass |
||||||
|
36: Belt |
||||||
|
37: Monitor/TV |
||||||
|
38: Backpack |
||||||
|
39: Umbrella |
||||||
|
40: Traffic Light |
||||||
|
41: Speaker |
||||||
|
42: Watch |
||||||
|
43: Tie |
||||||
|
44: Trash bin Can |
||||||
|
45: Slippers |
||||||
|
46: Bicycle |
||||||
|
47: Stool |
||||||
|
48: Barrel/bucket |
||||||
|
49: Van |
||||||
|
50: Couch |
||||||
|
51: Sandals |
||||||
|
52: Basket |
||||||
|
53: Drum |
||||||
|
54: Pen/Pencil |
||||||
|
55: Bus |
||||||
|
56: Wild Bird |
||||||
|
57: High Heels |
||||||
|
58: Motorcycle |
||||||
|
59: Guitar |
||||||
|
60: Carpet |
||||||
|
61: Cell Phone |
||||||
|
62: Bread |
||||||
|
63: Camera |
||||||
|
64: Canned |
||||||
|
65: Truck |
||||||
|
66: Traffic cone |
||||||
|
67: Cymbal |
||||||
|
68: Lifesaver |
||||||
|
69: Towel |
||||||
|
70: Stuffed Toy |
||||||
|
71: Candle |
||||||
|
72: Sailboat |
||||||
|
73: Laptop |
||||||
|
74: Awning |
||||||
|
75: Bed |
||||||
|
76: Faucet |
||||||
|
77: Tent |
||||||
|
78: Horse |
||||||
|
79: Mirror |
||||||
|
80: Power outlet |
||||||
|
81: Sink |
||||||
|
82: Apple |
||||||
|
83: Air Conditioner |
||||||
|
84: Knife |
||||||
|
85: Hockey Stick |
||||||
|
86: Paddle |
||||||
|
87: Pickup Truck |
||||||
|
88: Fork |
||||||
|
89: Traffic Sign |
||||||
|
90: Balloon |
||||||
|
91: Tripod |
||||||
|
92: Dog |
||||||
|
93: Spoon |
||||||
|
94: Clock |
||||||
|
95: Pot |
||||||
|
96: Cow |
||||||
|
97: Cake |
||||||
|
98: Dinning Table |
||||||
|
99: Sheep |
||||||
|
100: Hanger |
||||||
|
101: Blackboard/Whiteboard |
||||||
|
102: Napkin |
||||||
|
103: Other Fish |
||||||
|
104: Orange/Tangerine |
||||||
|
105: Toiletry |
||||||
|
106: Keyboard |
||||||
|
107: Tomato |
||||||
|
108: Lantern |
||||||
|
109: Machinery Vehicle |
||||||
|
110: Fan |
||||||
|
111: Green Vegetables |
||||||
|
112: Banana |
||||||
|
113: Baseball Glove |
||||||
|
114: Airplane |
||||||
|
115: Mouse |
||||||
|
116: Train |
||||||
|
117: Pumpkin |
||||||
|
118: Soccer |
||||||
|
119: Skiboard |
||||||
|
120: Luggage |
||||||
|
121: Nightstand |
||||||
|
122: Tea pot |
||||||
|
123: Telephone |
||||||
|
124: Trolley |
||||||
|
125: Head Phone |
||||||
|
126: Sports Car |
||||||
|
127: Stop Sign |
||||||
|
128: Dessert |
||||||
|
129: Scooter |
||||||
|
130: Stroller |
||||||
|
131: Crane |
||||||
|
132: Remote |
||||||
|
133: Refrigerator |
||||||
|
134: Oven |
||||||
|
135: Lemon |
||||||
|
136: Duck |
||||||
|
137: Baseball Bat |
||||||
|
138: Surveillance Camera |
||||||
|
139: Cat |
||||||
|
140: Jug |
||||||
|
141: Broccoli |
||||||
|
142: Piano |
||||||
|
143: Pizza |
||||||
|
144: Elephant |
||||||
|
145: Skateboard |
||||||
|
146: Surfboard |
||||||
|
147: Gun |
||||||
|
148: Skating and Skiing shoes |
||||||
|
149: Gas stove |
||||||
|
150: Donut |
||||||
|
151: Bow Tie |
||||||
|
152: Carrot |
||||||
|
153: Toilet |
||||||
|
154: Kite |
||||||
|
155: Strawberry |
||||||
|
156: Other Balls |
||||||
|
157: Shovel |
||||||
|
158: Pepper |
||||||
|
159: Computer Box |
||||||
|
160: Toilet Paper |
||||||
|
161: Cleaning Products |
||||||
|
162: Chopsticks |
||||||
|
163: Microwave |
||||||
|
164: Pigeon |
||||||
|
165: Baseball |
||||||
|
166: Cutting/chopping Board |
||||||
|
167: Coffee Table |
||||||
|
168: Side Table |
||||||
|
169: Scissors |
||||||
|
170: Marker |
||||||
|
171: Pie |
||||||
|
172: Ladder |
||||||
|
173: Snowboard |
||||||
|
174: Cookies |
||||||
|
175: Radiator |
||||||
|
176: Fire Hydrant |
||||||
|
177: Basketball |
||||||
|
178: Zebra |
||||||
|
179: Grape |
||||||
|
180: Giraffe |
||||||
|
181: Potato |
||||||
|
182: Sausage |
||||||
|
183: Tricycle |
||||||
|
184: Violin |
||||||
|
185: Egg |
||||||
|
186: Fire Extinguisher |
||||||
|
187: Candy |
||||||
|
188: Fire Truck |
||||||
|
189: Billiards |
||||||
|
190: Converter |
||||||
|
191: Bathtub |
||||||
|
192: Wheelchair |
||||||
|
193: Golf Club |
||||||
|
194: Briefcase |
||||||
|
195: Cucumber |
||||||
|
196: Cigar/Cigarette |
||||||
|
197: Paint Brush |
||||||
|
198: Pear |
||||||
|
199: Heavy Truck |
||||||
|
200: Hamburger |
||||||
|
201: Extractor |
||||||
|
202: Extension Cord |
||||||
|
203: Tong |
||||||
|
204: Tennis Racket |
||||||
|
205: Folder |
||||||
|
206: American Football |
||||||
|
207: earphone |
||||||
|
208: Mask |
||||||
|
209: Kettle |
||||||
|
210: Tennis |
||||||
|
211: Ship |
||||||
|
212: Swing |
||||||
|
213: Coffee Machine |
||||||
|
214: Slide |
||||||
|
215: Carriage |
||||||
|
216: Onion |
||||||
|
217: Green beans |
||||||
|
218: Projector |
||||||
|
219: Frisbee |
||||||
|
220: Washing Machine/Drying Machine |
||||||
|
221: Chicken |
||||||
|
222: Printer |
||||||
|
223: Watermelon |
||||||
|
224: Saxophone |
||||||
|
225: Tissue |
||||||
|
226: Toothbrush |
||||||
|
227: Ice cream |
||||||
|
228: Hot-air balloon |
||||||
|
229: Cello |
||||||
|
230: French Fries |
||||||
|
231: Scale |
||||||
|
232: Trophy |
||||||
|
233: Cabbage |
||||||
|
234: Hot dog |
||||||
|
235: Blender |
||||||
|
236: Peach |
||||||
|
237: Rice |
||||||
|
238: Wallet/Purse |
||||||
|
239: Volleyball |
||||||
|
240: Deer |
||||||
|
241: Goose |
||||||
|
242: Tape |
||||||
|
243: Tablet |
||||||
|
244: Cosmetics |
||||||
|
245: Trumpet |
||||||
|
246: Pineapple |
||||||
|
247: Golf Ball |
||||||
|
248: Ambulance |
||||||
|
249: Parking meter |
||||||
|
250: Mango |
||||||
|
251: Key |
||||||
|
252: Hurdle |
||||||
|
253: Fishing Rod |
||||||
|
254: Medal |
||||||
|
255: Flute |
||||||
|
256: Brush |
||||||
|
257: Penguin |
||||||
|
258: Megaphone |
||||||
|
259: Corn |
||||||
|
260: Lettuce |
||||||
|
261: Garlic |
||||||
|
262: Swan |
||||||
|
263: Helicopter |
||||||
|
264: Green Onion |
||||||
|
265: Sandwich |
||||||
|
266: Nuts |
||||||
|
267: Speed Limit Sign |
||||||
|
268: Induction Cooker |
||||||
|
269: Broom |
||||||
|
270: Trombone |
||||||
|
271: Plum |
||||||
|
272: Rickshaw |
||||||
|
273: Goldfish |
||||||
|
274: Kiwi fruit |
||||||
|
275: Router/modem |
||||||
|
276: Poker Card |
||||||
|
277: Toaster |
||||||
|
278: Shrimp |
||||||
|
279: Sushi |
||||||
|
280: Cheese |
||||||
|
281: Notepaper |
||||||
|
282: Cherry |
||||||
|
283: Pliers |
||||||
|
284: CD |
||||||
|
285: Pasta |
||||||
|
286: Hammer |
||||||
|
287: Cue |
||||||
|
288: Avocado |
||||||
|
289: Hamimelon |
||||||
|
290: Flask |
||||||
|
291: Mushroom |
||||||
|
292: Screwdriver |
||||||
|
293: Soap |
||||||
|
294: Recorder |
||||||
|
295: Bear |
||||||
|
296: Eggplant |
||||||
|
297: Board Eraser |
||||||
|
298: Coconut |
||||||
|
299: Tape Measure/Ruler |
||||||
|
300: Pig |
||||||
|
301: Showerhead |
||||||
|
302: Globe |
||||||
|
303: Chips |
||||||
|
304: Steak |
||||||
|
305: Crosswalk Sign |
||||||
|
306: Stapler |
||||||
|
307: Camel |
||||||
|
308: Formula 1 |
||||||
|
309: Pomegranate |
||||||
|
310: Dishwasher |
||||||
|
311: Crab |
||||||
|
312: Hoverboard |
||||||
|
313: Meat ball |
||||||
|
314: Rice Cooker |
||||||
|
315: Tuba |
||||||
|
316: Calculator |
||||||
|
317: Papaya |
||||||
|
318: Antelope |
||||||
|
319: Parrot |
||||||
|
320: Seal |
||||||
|
321: Butterfly |
||||||
|
322: Dumbbell |
||||||
|
323: Donkey |
||||||
|
324: Lion |
||||||
|
325: Urinal |
||||||
|
326: Dolphin |
||||||
|
327: Electric Drill |
||||||
|
328: Hair Dryer |
||||||
|
329: Egg tart |
||||||
|
330: Jellyfish |
||||||
|
331: Treadmill |
||||||
|
332: Lighter |
||||||
|
333: Grapefruit |
||||||
|
334: Game board |
||||||
|
335: Mop |
||||||
|
336: Radish |
||||||
|
337: Baozi |
||||||
|
338: Target |
||||||
|
339: French |
||||||
|
340: Spring Rolls |
||||||
|
341: Monkey |
||||||
|
342: Rabbit |
||||||
|
343: Pencil Case |
||||||
|
344: Yak |
||||||
|
345: Red Cabbage |
||||||
|
346: Binoculars |
||||||
|
347: Asparagus |
||||||
|
348: Barbell |
||||||
|
349: Scallop |
||||||
|
350: Noddles |
||||||
|
351: Comb |
||||||
|
352: Dumpling |
||||||
|
353: Oyster |
||||||
|
354: Table Tennis paddle |
||||||
|
355: Cosmetics Brush/Eyeliner Pencil |
||||||
|
356: Chainsaw |
||||||
|
357: Eraser |
||||||
|
358: Lobster |
||||||
|
359: Durian |
||||||
|
360: Okra |
||||||
|
361: Lipstick |
||||||
|
362: Cosmetics Mirror |
||||||
|
363: Curling |
||||||
|
364: Table Tennis |
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
||||||
|
download: | |
||||||
|
from tqdm import tqdm |
||||||
|
|
||||||
|
from utils.general import Path, check_requirements, download, np, xyxy2xywhn |
||||||
|
|
||||||
|
check_requirements(('pycocotools>=2.0',)) |
||||||
|
from pycocotools.coco import COCO |
||||||
|
|
||||||
|
# Make Directories |
||||||
|
dir = Path(yaml['path']) # dataset root dir |
||||||
|
for p in 'images', 'labels': |
||||||
|
(dir / p).mkdir(parents=True, exist_ok=True) |
||||||
|
for q in 'train', 'val': |
||||||
|
(dir / p / q).mkdir(parents=True, exist_ok=True) |
||||||
|
|
||||||
|
# Train, Val Splits |
||||||
|
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]: |
||||||
|
print(f"Processing {split} in {patches} patches ...") |
||||||
|
images, labels = dir / 'images' / split, dir / 'labels' / split |
||||||
|
|
||||||
|
# Download |
||||||
|
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/" |
||||||
|
if split == 'train': |
||||||
|
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json |
||||||
|
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8) |
||||||
|
elif split == 'val': |
||||||
|
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json |
||||||
|
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8) |
||||||
|
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8) |
||||||
|
|
||||||
|
# Move |
||||||
|
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'): |
||||||
|
f.rename(images / f.name) # move to /images/{split} |
||||||
|
|
||||||
|
# Labels |
||||||
|
coco = COCO(dir / f'zhiyuan_objv2_{split}.json') |
||||||
|
names = [x["name"] for x in coco.loadCats(coco.getCatIds())] |
||||||
|
for cid, cat in enumerate(names): |
||||||
|
catIds = coco.getCatIds(catNms=[cat]) |
||||||
|
imgIds = coco.getImgIds(catIds=catIds) |
||||||
|
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'): |
||||||
|
width, height = im["width"], im["height"] |
||||||
|
path = Path(im["file_name"]) # image filename |
||||||
|
try: |
||||||
|
with open(labels / path.with_suffix('.txt').name, 'a') as file: |
||||||
|
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None) |
||||||
|
for a in coco.loadAnns(annIds): |
||||||
|
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner) |
||||||
|
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4) |
||||||
|
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped |
||||||
|
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n") |
||||||
|
except Exception as e: |
||||||
|
print(e) |
@ -0,0 +1,53 @@ |
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license |
||||||
|
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail |
||||||
|
# Example usage: python train.py --data SKU-110K.yaml |
||||||
|
# parent |
||||||
|
# ├── yolov5 |
||||||
|
# └── datasets |
||||||
|
# └── SKU-110K ← downloads here (13.6 GB) |
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
||||||
|
path: ../datasets/SKU-110K # dataset root dir |
||||||
|
train: train.txt # train images (relative to 'path') 8219 images |
||||||
|
val: val.txt # val images (relative to 'path') 588 images |
||||||
|
test: test.txt # test images (optional) 2936 images |
||||||
|
|
||||||
|
# Classes |
||||||
|
names: |
||||||
|
0: object |
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
||||||
|
download: | |
||||||
|
import shutil |
||||||
|
from tqdm import tqdm |
||||||
|
from utils.general import np, pd, Path, download, xyxy2xywh |
||||||
|
|
||||||
|
|
||||||
|
# Download |
||||||
|
dir = Path(yaml['path']) # dataset root dir |
||||||
|
parent = Path(dir.parent) # download dir |
||||||
|
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz'] |
||||||
|
download(urls, dir=parent, delete=False) |
||||||
|
|
||||||
|
# Rename directories |
||||||
|
if dir.exists(): |
||||||
|
shutil.rmtree(dir) |
||||||
|
(parent / 'SKU110K_fixed').rename(dir) # rename dir |
||||||
|
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir |
||||||
|
|
||||||
|
# Convert labels |
||||||
|
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names |
||||||
|
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv': |
||||||
|
x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations |
||||||
|
images, unique_images = x[:, 0], np.unique(x[:, 0]) |
||||||
|
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f: |
||||||
|
f.writelines(f'./images/{s}\n' for s in unique_images) |
||||||
|
for im in tqdm(unique_images, desc=f'Converting {dir / d}'): |
||||||
|
cls = 0 # single-class dataset |
||||||
|
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f: |
||||||
|
for r in x[images == im]: |
||||||
|
w, h = r[6], r[7] # image width, height |
||||||
|
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance |
||||||
|
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label |
@ -0,0 +1,100 @@ |
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license |
||||||
|
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford |
||||||
|
# Example usage: python train.py --data VOC.yaml |
||||||
|
# parent |
||||||
|
# ├── yolov5 |
||||||
|
# └── datasets |
||||||
|
# └── VOC ← downloads here (2.8 GB) |
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
||||||
|
path: ../datasets/VOC |
||||||
|
train: # train images (relative to 'path') 16551 images |
||||||
|
- images/train2012 |
||||||
|
- images/train2007 |
||||||
|
- images/val2012 |
||||||
|
- images/val2007 |
||||||
|
val: # val images (relative to 'path') 4952 images |
||||||
|
- images/test2007 |
||||||
|
test: # test images (optional) |
||||||
|
- images/test2007 |
||||||
|
|
||||||
|
# Classes |
||||||
|
names: |
||||||
|
0: aeroplane |
||||||
|
1: bicycle |
||||||
|
2: bird |
||||||
|
3: boat |
||||||
|
4: bottle |
||||||
|
5: bus |
||||||
|
6: car |
||||||
|
7: cat |
||||||
|
8: chair |
||||||
|
9: cow |
||||||
|
10: diningtable |
||||||
|
11: dog |
||||||
|
12: horse |
||||||
|
13: motorbike |
||||||
|
14: person |
||||||
|
15: pottedplant |
||||||
|
16: sheep |
||||||
|
17: sofa |
||||||
|
18: train |
||||||
|
19: tvmonitor |
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
||||||
|
download: | |
||||||
|
import xml.etree.ElementTree as ET |
||||||
|
|
||||||
|
from tqdm import tqdm |
||||||
|
from utils.general import download, Path |
||||||
|
|
||||||
|
|
||||||
|
def convert_label(path, lb_path, year, image_id): |
||||||
|
def convert_box(size, box): |
||||||
|
dw, dh = 1. / size[0], 1. / size[1] |
||||||
|
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2] |
||||||
|
return x * dw, y * dh, w * dw, h * dh |
||||||
|
|
||||||
|
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml') |
||||||
|
out_file = open(lb_path, 'w') |
||||||
|
tree = ET.parse(in_file) |
||||||
|
root = tree.getroot() |
||||||
|
size = root.find('size') |
||||||
|
w = int(size.find('width').text) |
||||||
|
h = int(size.find('height').text) |
||||||
|
|
||||||
|
names = list(yaml['names'].values()) # names list |
||||||
|
for obj in root.iter('object'): |
||||||
|
cls = obj.find('name').text |
||||||
|
if cls in names and int(obj.find('difficult').text) != 1: |
||||||
|
xmlbox = obj.find('bndbox') |
||||||
|
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')]) |
||||||
|
cls_id = names.index(cls) # class id |
||||||
|
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n') |
||||||
|
|
||||||
|
|
||||||
|
# Download |
||||||
|
dir = Path(yaml['path']) # dataset root dir |
||||||
|
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/' |
||||||
|
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images |
||||||
|
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images |
||||||
|
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images |
||||||
|
download(urls, dir=dir / 'images', delete=False, curl=True, threads=3) |
||||||
|
|
||||||
|
# Convert |
||||||
|
path = dir / 'images/VOCdevkit' |
||||||
|
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'): |
||||||
|
imgs_path = dir / 'images' / f'{image_set}{year}' |
||||||
|
lbs_path = dir / 'labels' / f'{image_set}{year}' |
||||||
|
imgs_path.mkdir(exist_ok=True, parents=True) |
||||||
|
lbs_path.mkdir(exist_ok=True, parents=True) |
||||||
|
|
||||||
|
with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f: |
||||||
|
image_ids = f.read().strip().split() |
||||||
|
for id in tqdm(image_ids, desc=f'{image_set}{year}'): |
||||||
|
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path |
||||||
|
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path |
||||||
|
f.rename(imgs_path / f.name) # move image |
||||||
|
convert_label(path, lb_path, year, id) # convert labels to YOLO format |
@ -0,0 +1,70 @@ |
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license |
||||||
|
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University |
||||||
|
# Example usage: python train.py --data VisDrone.yaml |
||||||
|
# parent |
||||||
|
# ├── yolov5 |
||||||
|
# └── datasets |
||||||
|
# └── VisDrone ← downloads here (2.3 GB) |
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
||||||
|
path: ../datasets/VisDrone # dataset root dir |
||||||
|
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images |
||||||
|
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images |
||||||
|
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images |
||||||
|
|
||||||
|
# Classes |
||||||
|
names: |
||||||
|
0: pedestrian |
||||||
|
1: people |
||||||
|
2: bicycle |
||||||
|
3: car |
||||||
|
4: van |
||||||
|
5: truck |
||||||
|
6: tricycle |
||||||
|
7: awning-tricycle |
||||||
|
8: bus |
||||||
|
9: motor |
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
||||||
|
download: | |
||||||
|
from utils.general import download, os, Path |
||||||
|
|
||||||
|
def visdrone2yolo(dir): |
||||||
|
from PIL import Image |
||||||
|
from tqdm import tqdm |
||||||
|
|
||||||
|
def convert_box(size, box): |
||||||
|
# Convert VisDrone box to YOLO xywh box |
||||||
|
dw = 1. / size[0] |
||||||
|
dh = 1. / size[1] |
||||||
|
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh |
||||||
|
|
||||||
|
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory |
||||||
|
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}') |
||||||
|
for f in pbar: |
||||||
|
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size |
||||||
|
lines = [] |
||||||
|
with open(f, 'r') as file: # read annotation.txt |
||||||
|
for row in [x.split(',') for x in file.read().strip().splitlines()]: |
||||||
|
if row[4] == '0': # VisDrone 'ignored regions' class 0 |
||||||
|
continue |
||||||
|
cls = int(row[5]) - 1 |
||||||
|
box = convert_box(img_size, tuple(map(int, row[:4]))) |
||||||
|
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n") |
||||||
|
with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl: |
||||||
|
fl.writelines(lines) # write label.txt |
||||||
|
|
||||||
|
|
||||||
|
# Download |
||||||
|
dir = Path(yaml['path']) # dataset root dir |
||||||
|
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip', |
||||||
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip', |
||||||
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip', |
||||||
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip'] |
||||||
|
download(urls, dir=dir, curl=True, threads=4) |
||||||
|
|
||||||
|
# Convert |
||||||
|
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev': |
||||||
|
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels |
@ -0,0 +1,153 @@ |
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license |
||||||
|
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA) |
||||||
|
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! -------- |
||||||
|
# Example usage: python train.py --data xView.yaml |
||||||
|
# parent |
||||||
|
# ├── yolov5 |
||||||
|
# └── datasets |
||||||
|
# └── xView ← downloads here (20.7 GB) |
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] |
||||||
|
path: ../datasets/xView # dataset root dir |
||||||
|
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images |
||||||
|
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images |
||||||
|
|
||||||
|
# Classes |
||||||
|
names: |
||||||
|
0: Fixed-wing Aircraft |
||||||
|
1: Small Aircraft |
||||||
|
2: Cargo Plane |
||||||
|
3: Helicopter |
||||||
|
4: Passenger Vehicle |
||||||
|
5: Small Car |
||||||
|
6: Bus |
||||||
|
7: Pickup Truck |
||||||
|
8: Utility Truck |
||||||
|
9: Truck |
||||||
|
10: Cargo Truck |
||||||
|
11: Truck w/Box |
||||||
|
12: Truck Tractor |
||||||
|
13: Trailer |
||||||
|
14: Truck w/Flatbed |
||||||
|
15: Truck w/Liquid |
||||||
|
16: Crane Truck |
||||||
|
17: Railway Vehicle |
||||||
|
18: Passenger Car |
||||||
|
19: Cargo Car |
||||||
|
20: Flat Car |
||||||
|
21: Tank car |
||||||
|
22: Locomotive |
||||||
|
23: Maritime Vessel |
||||||
|
24: Motorboat |
||||||
|
25: Sailboat |
||||||
|
26: Tugboat |
||||||
|
27: Barge |
||||||
|
28: Fishing Vessel |
||||||
|
29: Ferry |
||||||
|
30: Yacht |
||||||
|
31: Container Ship |
||||||
|
32: Oil Tanker |
||||||
|
33: Engineering Vehicle |
||||||
|
34: Tower crane |
||||||
|
35: Container Crane |
||||||
|
36: Reach Stacker |
||||||
|
37: Straddle Carrier |
||||||
|
38: Mobile Crane |
||||||
|
39: Dump Truck |
||||||
|
40: Haul Truck |
||||||
|
41: Scraper/Tractor |
||||||
|
42: Front loader/Bulldozer |
||||||
|
43: Excavator |
||||||
|
44: Cement Mixer |
||||||
|
45: Ground Grader |
||||||
|
46: Hut/Tent |
||||||
|
47: Shed |
||||||
|
48: Building |
||||||
|
49: Aircraft Hangar |
||||||
|
50: Damaged Building |
||||||
|
51: Facility |
||||||
|
52: Construction Site |
||||||
|
53: Vehicle Lot |
||||||
|
54: Helipad |
||||||
|
55: Storage Tank |
||||||
|
56: Shipping container lot |
||||||
|
57: Shipping Container |
||||||
|
58: Pylon |
||||||
|
59: Tower |
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) --------------------------------------------------------------------------------------- |
||||||
|
download: | |
||||||
|
import json |
||||||
|
import os |
||||||
|
from pathlib import Path |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
from PIL import Image |
||||||
|
from tqdm import tqdm |
||||||
|
|
||||||
|
from utils.dataloaders import autosplit |
||||||
|
from utils.general import download, xyxy2xywhn |
||||||
|
|
||||||
|
|
||||||
|
def convert_labels(fname=Path('xView/xView_train.geojson')): |
||||||
|
# Convert xView geoJSON labels to YOLO format |
||||||
|
path = fname.parent |
||||||
|
with open(fname) as f: |
||||||
|
print(f'Loading {fname}...') |
||||||
|
data = json.load(f) |
||||||
|
|
||||||
|
# Make dirs |
||||||
|
labels = Path(path / 'labels' / 'train') |
||||||
|
os.system(f'rm -rf {labels}') |
||||||
|
labels.mkdir(parents=True, exist_ok=True) |
||||||
|
|
||||||
|
# xView classes 11-94 to 0-59 |
||||||
|
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11, |
||||||
|
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1, |
||||||
|
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46, |
||||||
|
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59] |
||||||
|
|
||||||
|
shapes = {} |
||||||
|
for feature in tqdm(data['features'], desc=f'Converting {fname}'): |
||||||
|
p = feature['properties'] |
||||||
|
if p['bounds_imcoords']: |
||||||
|
id = p['image_id'] |
||||||
|
file = path / 'train_images' / id |
||||||
|
if file.exists(): # 1395.tif missing |
||||||
|
try: |
||||||
|
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")]) |
||||||
|
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}' |
||||||
|
cls = p['type_id'] |
||||||
|
cls = xview_class2index[int(cls)] # xView class to 0-60 |
||||||
|
assert 59 >= cls >= 0, f'incorrect class index {cls}' |
||||||
|
|
||||||
|
# Write YOLO label |
||||||
|
if id not in shapes: |
||||||
|
shapes[id] = Image.open(file).size |
||||||
|
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True) |
||||||
|
with open((labels / id).with_suffix('.txt'), 'a') as f: |
||||||
|
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt |
||||||
|
except Exception as e: |
||||||
|
print(f'WARNING: skipping one label for {file}: {e}') |
||||||
|
|
||||||
|
|
||||||
|
# Download manually from https://challenge.xviewdataset.org |
||||||
|
dir = Path(yaml['path']) # dataset root dir |
||||||
|
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels |
||||||
|
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images |
||||||
|
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels) |
||||||
|
# download(urls, dir=dir, delete=False) |
||||||
|
|
||||||
|
# Convert labels |
||||||
|
convert_labels(dir / 'xView_train.geojson') |
||||||
|
|
||||||
|
# Move images |
||||||
|
images = Path(dir / 'images') |
||||||
|
images.mkdir(parents=True, exist_ok=True) |
||||||
|
Path(dir / 'train_images').rename(dir / 'images' / 'train') |
||||||
|
Path(dir / 'val_images').rename(dir / 'images' / 'val') |
||||||
|
|
||||||
|
# Split |
||||||
|
autosplit(dir / 'images' / 'train') |
Loading…
Reference in new issue