|
|
|
@ -138,7 +138,7 @@ def try_export(inner_func): |
|
|
|
|
LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as '{f}' ({file_size(f):.1f} MB)") |
|
|
|
|
return f, model |
|
|
|
|
except Exception as e: |
|
|
|
|
LOGGER.info(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}") |
|
|
|
|
LOGGER.error(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}") |
|
|
|
|
raise e |
|
|
|
|
|
|
|
|
|
return outer_func |
|
|
|
@ -204,9 +204,8 @@ class Exporter: |
|
|
|
|
self.args.half = False |
|
|
|
|
assert not self.args.dynamic, "half=True not compatible with dynamic=True, i.e. use only one." |
|
|
|
|
self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size |
|
|
|
|
if self.args.int8 and not self.args.dynamic and (engine or xml): |
|
|
|
|
self.args.dynamic = True # enforce dynamic to export TensorRT INT8; ensures ONNX is dynamic |
|
|
|
|
LOGGER.warning("WARNING ⚠️ INT8 export requires dynamic image sizes, setting dynamic=True.") |
|
|
|
|
if self.args.int8 and engine: |
|
|
|
|
self.args.dynamic = True # enforce dynamic to export TensorRT INT8 |
|
|
|
|
if self.args.optimize: |
|
|
|
|
assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False" |
|
|
|
|
assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'" |
|
|
|
@ -355,18 +354,20 @@ class Exporter: |
|
|
|
|
"""Build and return a dataloader suitable for calibration of INT8 models.""" |
|
|
|
|
LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'") |
|
|
|
|
data = (check_cls_dataset if self.model.task == "classify" else check_det_dataset)(self.args.data) |
|
|
|
|
# TensorRT INT8 calibration should use 2x batch size |
|
|
|
|
batch = self.args.batch * (2 if self.args.format == "engine" else 1) |
|
|
|
|
dataset = YOLODataset( |
|
|
|
|
data[self.args.split or "val"], |
|
|
|
|
data=data, |
|
|
|
|
task=self.model.task, |
|
|
|
|
imgsz=self.imgsz[0], |
|
|
|
|
augment=False, |
|
|
|
|
batch_size=self.args.batch * 2, # NOTE TensorRT INT8 calibration should use 2x batch size |
|
|
|
|
batch_size=batch, |
|
|
|
|
) |
|
|
|
|
n = len(dataset) |
|
|
|
|
if n < 300: |
|
|
|
|
LOGGER.warning(f"{prefix} WARNING ⚠️ >300 images recommended for INT8 calibration, found {n} images.") |
|
|
|
|
return build_dataloader(dataset, batch=self.args.batch * 2, workers=0) # required for batch loading |
|
|
|
|
return build_dataloader(dataset, batch=batch, workers=0) # required for batch loading |
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_torchscript(self, prefix=colorstr("TorchScript:")): |
|
|
|
@ -422,7 +423,6 @@ class Exporter: |
|
|
|
|
|
|
|
|
|
# Checks |
|
|
|
|
model_onnx = onnx.load(f) # load onnx model |
|
|
|
|
# onnx.checker.check_model(model_onnx) # check onnx model |
|
|
|
|
|
|
|
|
|
# Simplify |
|
|
|
|
if self.args.simplify: |
|
|
|
@ -432,10 +432,6 @@ class Exporter: |
|
|
|
|
LOGGER.info(f"{prefix} slimming with onnxslim {onnxslim.__version__}...") |
|
|
|
|
model_onnx = onnxslim.slim(model_onnx) |
|
|
|
|
|
|
|
|
|
# ONNX Simplifier (deprecated as must be compiled with 'cmake' in aarch64 and Conda CI environments) |
|
|
|
|
# import onnxsim |
|
|
|
|
# model_onnx, check = onnxsim.simplify(model_onnx) |
|
|
|
|
# assert check, "Simplified ONNX model could not be validated" |
|
|
|
|
except Exception as e: |
|
|
|
|
LOGGER.warning(f"{prefix} simplifier failure: {e}") |
|
|
|
|
|
|
|
|
@ -679,7 +675,6 @@ class Exporter: |
|
|
|
|
def export_engine(self, prefix=colorstr("TensorRT:")): |
|
|
|
|
"""YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt.""" |
|
|
|
|
assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'" |
|
|
|
|
# self.args.simplify = True |
|
|
|
|
f_onnx, _ = self.export_onnx() # run before TRT import https://github.com/ultralytics/ultralytics/issues/7016 |
|
|
|
|
|
|
|
|
|
try: |
|
|
|
@ -786,7 +781,7 @@ class Exporter: |
|
|
|
|
# Load dataset w/ builder (for batching) and calibrate |
|
|
|
|
config.int8_calibrator = EngineCalibrator( |
|
|
|
|
dataset=self.get_int8_calibration_dataloader(prefix), |
|
|
|
|
batch=2 * self.args.batch, |
|
|
|
|
batch=2 * self.args.batch, # TensorRT INT8 calibration should use 2x batch size |
|
|
|
|
cache=str(self.file.with_suffix(".cache")), |
|
|
|
|
) |
|
|
|
|
|
|
|
|
@ -869,8 +864,6 @@ class Exporter: |
|
|
|
|
f.mkdir() |
|
|
|
|
images = [batch["img"].permute(0, 2, 3, 1) for batch in self.get_int8_calibration_dataloader(prefix)] |
|
|
|
|
images = torch.cat(images, 0).float() |
|
|
|
|
# mean = images.view(-1, 3).mean(0) # imagenet mean [123.675, 116.28, 103.53] |
|
|
|
|
# std = images.view(-1, 3).std(0) # imagenet std [58.395, 57.12, 57.375] |
|
|
|
|
np.save(str(tmp_file), images.numpy().astype(np.float32)) # BHWC |
|
|
|
|
np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]] |
|
|
|
|
else: |
|
|
|
@ -998,20 +991,7 @@ class Exporter: |
|
|
|
|
if " " in f: |
|
|
|
|
LOGGER.warning(f"{prefix} WARNING ⚠️ your model may not work correctly with spaces in path '{f}'.") |
|
|
|
|
|
|
|
|
|
# f_json = Path(f) / 'model.json' # *.json path |
|
|
|
|
# with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order |
|
|
|
|
# subst = re.sub( |
|
|
|
|
# r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' |
|
|
|
|
# r'"Identity.?.?": {"name": "Identity.?.?"}, ' |
|
|
|
|
# r'"Identity.?.?": {"name": "Identity.?.?"}, ' |
|
|
|
|
# r'"Identity.?.?": {"name": "Identity.?.?"}}}', |
|
|
|
|
# r'{"outputs": {"Identity": {"name": "Identity"}, ' |
|
|
|
|
# r'"Identity_1": {"name": "Identity_1"}, ' |
|
|
|
|
# r'"Identity_2": {"name": "Identity_2"}, ' |
|
|
|
|
# r'"Identity_3": {"name": "Identity_3"}}}', |
|
|
|
|
# f_json.read_text(), |
|
|
|
|
# ) |
|
|
|
|
# j.write(subst) |
|
|
|
|
# Add metadata |
|
|
|
|
yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml |
|
|
|
|
return f, None |
|
|
|
|
|
|
|
|
@ -1104,27 +1084,11 @@ class Exporter: |
|
|
|
|
names = self.metadata["names"] |
|
|
|
|
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height |
|
|
|
|
_, nc = out0_shape # number of anchors, number of classes |
|
|
|
|
# _, nc = out0.type.multiArrayType.shape |
|
|
|
|
assert len(names) == nc, f"{len(names)} names found for nc={nc}" # check |
|
|
|
|
|
|
|
|
|
# Define output shapes (missing) |
|
|
|
|
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80) |
|
|
|
|
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4) |
|
|
|
|
# spec.neuralNetwork.preprocessing[0].featureName = '0' |
|
|
|
|
|
|
|
|
|
# Flexible input shapes |
|
|
|
|
# from coremltools.models.neural_network import flexible_shape_utils |
|
|
|
|
# s = [] # shapes |
|
|
|
|
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192)) |
|
|
|
|
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width) |
|
|
|
|
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s) |
|
|
|
|
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges |
|
|
|
|
# r.add_height_range((192, 640)) |
|
|
|
|
# r.add_width_range((192, 640)) |
|
|
|
|
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r) |
|
|
|
|
|
|
|
|
|
# Print |
|
|
|
|
# print(spec.description) |
|
|
|
|
|
|
|
|
|
# Model from spec |
|
|
|
|
model = ct.models.MLModel(spec, weights_dir=weights_dir) |
|
|
|
|