|
|
|
@ -27,14 +27,16 @@ def _log_debug_samples(files, title='Debug Samples'): |
|
|
|
|
files (List(PosixPath)) a list of file paths in PosixPath format |
|
|
|
|
title (str) A title that groups together images with the same values |
|
|
|
|
""" |
|
|
|
|
for f in files: |
|
|
|
|
if f.exists(): |
|
|
|
|
it = re.search(r'_batch(\d+)', f.name) |
|
|
|
|
iteration = int(it.groups()[0]) if it else 0 |
|
|
|
|
Task.current_task().get_logger().report_image(title=title, |
|
|
|
|
series=f.name.replace(it.group(), ''), |
|
|
|
|
local_path=str(f), |
|
|
|
|
iteration=iteration) |
|
|
|
|
task = Task.current_task() |
|
|
|
|
if task: |
|
|
|
|
for f in files: |
|
|
|
|
if f.exists(): |
|
|
|
|
it = re.search(r'_batch(\d+)', f.name) |
|
|
|
|
iteration = int(it.groups()[0]) if it else 0 |
|
|
|
|
task.get_logger().report_image(title=title, |
|
|
|
|
series=f.name.replace(it.group(), ''), |
|
|
|
|
local_path=str(f), |
|
|
|
|
iteration=iteration) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _log_plot(title, plot_path): |
|
|
|
@ -54,11 +56,9 @@ def _log_plot(title, plot_path): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_pretrain_routine_start(trainer): |
|
|
|
|
# TODO: reuse existing task |
|
|
|
|
try: |
|
|
|
|
if Task.current_task(): |
|
|
|
|
task = Task.current_task() |
|
|
|
|
|
|
|
|
|
task = Task.current_task() |
|
|
|
|
if task: |
|
|
|
|
# Make sure the automatic pytorch and matplotlib bindings are disabled! |
|
|
|
|
# We are logging these plots and model files manually in the integration |
|
|
|
|
PatchPyTorchModelIO.update_current_task(None) |
|
|
|
@ -80,43 +80,46 @@ def on_pretrain_routine_start(trainer): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_epoch_end(trainer): |
|
|
|
|
if trainer.epoch == 1: |
|
|
|
|
if trainer.epoch == 1 and Task.current_task(): |
|
|
|
|
_log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_fit_epoch_end(trainer): |
|
|
|
|
# You should have access to the validation bboxes under jdict |
|
|
|
|
Task.current_task().get_logger().report_scalar(title='Epoch Time', |
|
|
|
|
series='Epoch Time', |
|
|
|
|
value=trainer.epoch_time, |
|
|
|
|
iteration=trainer.epoch) |
|
|
|
|
if trainer.epoch == 0: |
|
|
|
|
model_info = { |
|
|
|
|
'model/parameters': get_num_params(trainer.model), |
|
|
|
|
'model/GFLOPs': round(get_flops(trainer.model), 3), |
|
|
|
|
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)} |
|
|
|
|
for k, v in model_info.items(): |
|
|
|
|
Task.current_task().get_logger().report_single_value(k, v) |
|
|
|
|
task = Task.current_task() |
|
|
|
|
if task: |
|
|
|
|
# You should have access to the validation bboxes under jdict |
|
|
|
|
task.get_logger().report_scalar(title='Epoch Time', |
|
|
|
|
series='Epoch Time', |
|
|
|
|
value=trainer.epoch_time, |
|
|
|
|
iteration=trainer.epoch) |
|
|
|
|
if trainer.epoch == 0: |
|
|
|
|
model_info = { |
|
|
|
|
'model/parameters': get_num_params(trainer.model), |
|
|
|
|
'model/GFLOPs': round(get_flops(trainer.model), 3), |
|
|
|
|
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)} |
|
|
|
|
for k, v in model_info.items(): |
|
|
|
|
task.get_logger().report_single_value(k, v) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_val_end(validator): |
|
|
|
|
# Log val_labels and val_pred |
|
|
|
|
_log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation') |
|
|
|
|
if Task.current_task(): |
|
|
|
|
# Log val_labels and val_pred |
|
|
|
|
_log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_end(trainer): |
|
|
|
|
# Log final results, CM matrix + PR plots |
|
|
|
|
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] |
|
|
|
|
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter |
|
|
|
|
for f in files: |
|
|
|
|
_log_plot(title=f.stem, plot_path=f) |
|
|
|
|
# Report final metrics |
|
|
|
|
for k, v in trainer.validator.metrics.results_dict.items(): |
|
|
|
|
Task.current_task().get_logger().report_single_value(k, v) |
|
|
|
|
# Log the final model |
|
|
|
|
Task.current_task().update_output_model(model_path=str(trainer.best), |
|
|
|
|
model_name=trainer.args.name, |
|
|
|
|
auto_delete_file=False) |
|
|
|
|
task = Task.current_task() |
|
|
|
|
if task: |
|
|
|
|
# Log final results, CM matrix + PR plots |
|
|
|
|
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] |
|
|
|
|
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter |
|
|
|
|
for f in files: |
|
|
|
|
_log_plot(title=f.stem, plot_path=f) |
|
|
|
|
# Report final metrics |
|
|
|
|
for k, v in trainer.validator.metrics.results_dict.items(): |
|
|
|
|
task.get_logger().report_single_value(k, v) |
|
|
|
|
# Log the final model |
|
|
|
|
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
callbacks = { |
|
|
|
|