From bfc078b32fec76d425f53b0d348af255368f0f04 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Fri, 24 Feb 2023 03:22:33 -0800 Subject: [PATCH] test updates, revert Results to CPU --- tests/test_cli.py | 6 +++--- ultralytics/yolo/engine/results.py | 6 +++--- ultralytics/yolo/utils/plotting.py | 4 +++- 3 files changed, 9 insertions(+), 7 deletions(-) diff --git a/tests/test_cli.py b/tests/test_cli.py index e4c1896fd3..2879b2a487 100644 --- a/tests/test_cli.py +++ b/tests/test_cli.py @@ -48,7 +48,7 @@ def test_val_classify(): # Predict checks ------------------------------------------------------------------------------------------------------- def test_predict_detect(): - run(f"yolo predict model={MODEL}.pt source={ROOT / 'assets'} imgsz=32") + run(f"yolo predict model={MODEL}.pt source={ROOT / 'assets'} imgsz=32 save") if checks.check_online(): run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/images/bus.jpg imgsz=32') run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/assets/decelera_landscape_min.mov imgsz=32') @@ -56,11 +56,11 @@ def test_predict_detect(): def test_predict_segment(): - run(f"yolo predict model={MODEL}-seg.pt source={ROOT / 'assets'} imgsz=32") + run(f"yolo predict model={MODEL}-seg.pt source={ROOT / 'assets'} imgsz=32 save") def test_predict_classify(): - run(f"yolo predict model={MODEL}-cls.pt source={ROOT / 'assets'} imgsz=32") + run(f"yolo predict model={MODEL}-cls.pt source={ROOT / 'assets'} imgsz=32 save") # Export checks -------------------------------------------------------------------------------------------------------- diff --git a/ultralytics/yolo/engine/results.py b/ultralytics/yolo/engine/results.py index a39e5c40a9..12ed3f3997 100644 --- a/ultralytics/yolo/engine/results.py +++ b/ultralytics/yolo/engine/results.py @@ -42,9 +42,9 @@ class Results: def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None) -> None: self.orig_img = orig_img self.orig_shape = orig_img.shape[:2] - self.boxes = Boxes(boxes.cpu(), self.orig_shape) if boxes is not None else None # native size boxes - self.masks = Masks(masks.cpu(), self.orig_shape) if masks is not None else None # native size or imgsz masks - self.probs = probs.cpu() if probs is not None else None + self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes + self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks + self.probs = probs if probs is not None else None self.names = names self.path = path self._keys = (k for k in ('boxes', 'masks', 'probs') if getattr(self, k) is not None) diff --git a/ultralytics/yolo/utils/plotting.py b/ultralytics/yolo/utils/plotting.py index c3b9c79465..76c042c75f 100644 --- a/ultralytics/yolo/utils/plotting.py +++ b/ultralytics/yolo/utils/plotting.py @@ -114,7 +114,9 @@ class Annotator: self.im = np.asarray(self.im).copy() if len(masks) == 0: self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255 - colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0 + if im_gpu.device != masks.device: + im_gpu = im_gpu.to(masks.device) + colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 colors = colors[:, None, None] # shape(n,1,1,3) masks = masks.unsqueeze(3) # shape(n,h,w,1) masks_color = masks * (colors * alpha) # shape(n,h,w,3)