`ultralytics 8.0.37` add TFLite metadata in AutoBackend (#953)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>
Co-authored-by: Aarni Koskela <akx@iki.fi>
pull/965/head^2 v8.0.37
Glenn Jocher 2 years ago committed by GitHub
parent 20fe708f31
commit bdc6cd4d8b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 3
      .gitignore
  2. 4
      README.md
  3. 2
      requirements.txt
  4. 4
      ultralytics/__init__.py
  5. 4
      ultralytics/hub/utils.py
  6. 15
      ultralytics/nn/autobackend.py
  7. 50
      ultralytics/nn/tasks.py
  8. 2
      ultralytics/yolo/__init__.py
  9. 2
      ultralytics/yolo/cfg/__init__.py
  10. 10
      ultralytics/yolo/data/__init__.py
  11. 4
      ultralytics/yolo/engine/exporter.py
  12. 6
      ultralytics/yolo/engine/model.py
  13. 11
      ultralytics/yolo/utils/__init__.py
  14. 4
      ultralytics/yolo/utils/callbacks/__init__.py
  15. 5
      ultralytics/yolo/utils/checks.py
  16. 2
      ultralytics/yolo/v8/classify/__init__.py
  17. 2
      ultralytics/yolo/v8/detect/__init__.py
  18. 2
      ultralytics/yolo/v8/segment/__init__.py

3
.gitignore vendored

@ -81,6 +81,9 @@ target/
profile_default/ profile_default/
ipython_config.py ipython_config.py
# Profiling
*.pclprof
# pyenv # pyenv
.python-version .python-version

@ -216,9 +216,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classification/) fo
## <div align="center">Ultralytics HUB</div> ## <div align="center">Ultralytics HUB</div>
[Ultralytics HUB](https://bit.ly/ultralytics_hub) is our ⭐ **NEW** no-code solution to visualize datasets, train YOLOv8 Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 (coming soon) 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
🚀 models, and deploy to the real world in a seamless experience. Get started for **Free** now! Also run YOLOv8 models on
your iOS or Android device by downloading the [Ultralytics App](https://ultralytics.com/app_install)!
<a href="https://bit.ly/ultralytics_hub" target="_blank"> <a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a> <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>

@ -34,10 +34,10 @@ seaborn>=0.11.0
# openvino-dev>=2022.3 # OpenVINO export # openvino-dev>=2022.3 # OpenVINO export
# Extras -------------------------------------- # Extras --------------------------------------
ipython # interactive notebook
psutil # system utilization psutil # system utilization
thop>=0.1.1 # FLOPs computation thop>=0.1.1 # FLOPs computation
wheel>=0.38.0 # Snyk vulnerability fix wheel>=0.38.0 # Snyk vulnerability fix
# ipython # interactive notebook
# albumentations>=1.0.3 # albumentations>=1.0.3
# pycocotools>=2.0.6 # COCO mAP # pycocotools>=2.0.6 # COCO mAP
# roboflow # roboflow

@ -1,8 +1,8 @@
# Ultralytics YOLO 🚀, GPL-3.0 license # Ultralytics YOLO 🚀, GPL-3.0 license
__version__ = "8.0.36" __version__ = "8.0.37"
from ultralytics.yolo.engine.model import YOLO from ultralytics.yolo.engine.model import YOLO
from ultralytics.yolo.utils.checks import check_yolo as checks from ultralytics.yolo.utils.checks import check_yolo as checks
__all__ = ["__version__", "YOLO", "hub", "checks"] # allow simpler import __all__ = ["__version__", "YOLO", "checks"] # allow simpler import

@ -12,7 +12,7 @@ from random import random
import requests import requests
from ultralytics.yolo.utils import (DEFAULT_CFG_DICT, ENVIRONMENT, LOGGER, RANK, SETTINGS, TryExcept, __version__, from ultralytics.yolo.utils import (DEFAULT_CFG_DICT, ENVIRONMENT, LOGGER, RANK, SETTINGS, TryExcept, __version__,
colorstr, emojis, get_git_origin_url, is_git_dir, is_github_actions_ci, colorstr, emojis, get_git_origin_url, is_colab, is_git_dir, is_github_actions_ci,
is_pip_package, is_pytest_running) is_pip_package, is_pytest_running)
from ultralytics.yolo.utils.checks import check_online from ultralytics.yolo.utils.checks import check_online
@ -36,6 +36,8 @@ def check_dataset_disk_space(url='https://ultralytics.com/assets/coco128.zip', s
def request_with_credentials(url: str) -> any: def request_with_credentials(url: str) -> any:
""" Make an ajax request with cookies attached """ """ Make an ajax request with cookies attached """
if not is_colab():
raise OSError('request_with_credentials() must run in a Colab environment')
from google.colab import output # noqa from google.colab import output # noqa
from IPython import display # noqa from IPython import display # noqa
display.display( display.display(

@ -1,7 +1,9 @@
# Ultralytics YOLO 🚀, GPL-3.0 license # Ultralytics YOLO 🚀, GPL-3.0 license
import ast
import contextlib
import json import json
import platform import platform
import zipfile
from collections import OrderedDict, namedtuple from collections import OrderedDict, namedtuple
from pathlib import Path from pathlib import Path
from urllib.parse import urlparse from urllib.parse import urlparse
@ -207,6 +209,12 @@ class AutoBackend(nn.Module):
interpreter.allocate_tensors() # allocate interpreter.allocate_tensors() # allocate
input_details = interpreter.get_input_details() # inputs input_details = interpreter.get_input_details() # inputs
output_details = interpreter.get_output_details() # outputs output_details = interpreter.get_output_details() # outputs
# load metadata
with contextlib.suppress(zipfile.BadZipFile):
with zipfile.ZipFile(w, "r") as model:
meta_file = model.namelist()[0]
meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
stride, names = int(meta['stride']), meta['names']
elif tfjs: # TF.js elif tfjs: # TF.js
raise NotImplementedError('ERROR: YOLOv8 TF.js inference is not supported') raise NotImplementedError('ERROR: YOLOv8 TF.js inference is not supported')
elif paddle: # PaddlePaddle elif paddle: # PaddlePaddle
@ -214,7 +222,7 @@ class AutoBackend(nn.Module):
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle') check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
import paddle.inference as pdi import paddle.inference as pdi
if not Path(w).is_file(): # if not *.pdmodel if not Path(w).is_file(): # if not *.pdmodel
w = next(Path(w).rglob('*.pdmodel')) # get *.xml file from *_openvino_model dir w = next(Path(w).rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
weights = Path(w).with_suffix('.pdiparams') weights = Path(w).with_suffix('.pdiparams')
config = pdi.Config(str(w), str(weights)) config = pdi.Config(str(w), str(weights))
if cuda: if cuda:
@ -328,6 +336,9 @@ class AutoBackend(nn.Module):
scale, zero_point = output['quantization'] scale, zero_point = output['quantization']
x = (x.astype(np.float32) - zero_point) * scale # re-scale x = (x.astype(np.float32) - zero_point) * scale # re-scale
y.append(x) y.append(x)
# TF segment fixes: export is reversed vs ONNX export and protos are transposed
if len(self.output_details) == 2: # segment
y = [y[1], np.transpose(y[0], (0, 3, 1, 2))]
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y] y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels

@ -1,5 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license # Ultralytics YOLO 🚀, GPL-3.0 license
import ast
import contextlib import contextlib
from copy import deepcopy from copy import deepcopy
from pathlib import Path from pathlib import Path
@ -427,6 +428,8 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
m = eval(m) if isinstance(m, str) else m # eval strings m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args): for j, a in enumerate(args):
# TODO: re-implement with eval() removal if possible
# args[j] = (locals()[a] if a in locals() else ast.literal_eval(a)) if isinstance(a, str) else a
with contextlib.suppress(NameError): with contextlib.suppress(NameError):
args[j] = eval(a) if isinstance(a, str) else a # eval strings args[j] = eval(a) if isinstance(a, str) else a # eval strings
@ -480,28 +483,9 @@ def guess_model_task(model):
Raises: Raises:
SyntaxError: If the task of the model could not be determined. SyntaxError: If the task of the model could not be determined.
""" """
cfg = None
if isinstance(model, dict):
cfg = model
elif isinstance(model, nn.Module): # PyTorch model
for x in 'model.args', 'model.model.args', 'model.model.model.args':
with contextlib.suppress(Exception):
return eval(x)['task']
for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
with contextlib.suppress(Exception):
cfg = eval(x)
break
elif isinstance(model, (str, Path)):
model = str(model)
if '-seg' in model:
return "segment"
elif '-cls' in model:
return "classify"
else:
return "detect"
# Guess from YAML dictionary def cfg2task(cfg):
if cfg: # Guess from YAML dictionary
m = cfg["head"][-1][-2].lower() # output module name m = cfg["head"][-1][-2].lower() # output module name
if m in ["classify", "classifier", "cls", "fc"]: if m in ["classify", "classifier", "cls", "fc"]:
return "classify" return "classify"
@ -510,8 +494,20 @@ def guess_model_task(model):
if m in ["segment"]: if m in ["segment"]:
return "segment" return "segment"
# Guess from model cfg
if isinstance(model, dict):
with contextlib.suppress(Exception):
return cfg2task(model)
# Guess from PyTorch model # Guess from PyTorch model
if isinstance(model, nn.Module): if isinstance(model, nn.Module): # PyTorch model
for x in 'model.args', 'model.model.args', 'model.model.model.args':
with contextlib.suppress(Exception):
return eval(x)['task']
for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
with contextlib.suppress(Exception):
return cfg2task(eval(x))
for m in model.modules(): for m in model.modules():
if isinstance(m, Detect): if isinstance(m, Detect):
return "detect" return "detect"
@ -520,6 +516,16 @@ def guess_model_task(model):
elif isinstance(m, Classify): elif isinstance(m, Classify):
return "classify" return "classify"
# Guess from model filename
if isinstance(model, (str, Path)):
model = Path(model).stem
if '-seg' in model:
return "segment"
elif '-cls' in model:
return "classify"
else:
return "detect"
# Unable to determine task from model # Unable to determine task from model
raise SyntaxError("YOLO is unable to automatically guess model task. Explicitly define task for your model, " raise SyntaxError("YOLO is unable to automatically guess model task. Explicitly define task for your model, "
"i.e. 'task=detect', 'task=segment' or 'task=classify'.") "i.e. 'task=detect', 'task=segment' or 'task=classify'.")

@ -1,3 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license # Ultralytics YOLO 🚀, GPL-3.0 license
from . import v8 from . import v8
__all__ = ["v8"]

@ -142,7 +142,7 @@ def check_cfg_mismatch(base: Dict, custom: Dict, e=None):
string = '' string = ''
for x in mismatched: for x in mismatched:
matches = get_close_matches(x, base) # key list matches = get_close_matches(x, base) # key list
matches = [f"{k}={DEFAULT_CFG_DICT[k]}" if DEFAULT_CFG_DICT[k] is not None else k for k in matches] # k=v matches = [f"{k}={DEFAULT_CFG_DICT[k]}" if DEFAULT_CFG_DICT.get(k) is not None else k for k in matches]
match_str = f"Similar arguments are i.e. {matches}." if matches else '' match_str = f"Similar arguments are i.e. {matches}." if matches else ''
string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n" string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n"
raise SyntaxError(string + CLI_HELP_MSG) from e raise SyntaxError(string + CLI_HELP_MSG) from e

@ -4,3 +4,13 @@ from .base import BaseDataset
from .build import build_classification_dataloader, build_dataloader, load_inference_source from .build import build_classification_dataloader, build_dataloader, load_inference_source
from .dataset import ClassificationDataset, SemanticDataset, YOLODataset from .dataset import ClassificationDataset, SemanticDataset, YOLODataset
from .dataset_wrappers import MixAndRectDataset from .dataset_wrappers import MixAndRectDataset
__all__ = [
"BaseDataset",
"ClassificationDataset",
"MixAndRectDataset",
"SemanticDataset",
"YOLODataset",
"build_classification_dataloader",
"build_dataloader",
"load_inference_source",]

@ -73,7 +73,7 @@ from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, __version__, callbacks,
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
from ultralytics.yolo.utils.files import file_size from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.ops import Profile from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode, get_latest_opset from ultralytics.yolo.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode
MACOS = platform.system() == 'Darwin' # macOS environment MACOS = platform.system() == 'Darwin' # macOS environment
@ -508,7 +508,7 @@ class Exporter:
onnx = self.file.with_suffix('.onnx') onnx = self.file.with_suffix('.onnx')
# Export to TF SavedModel # Export to TF SavedModel
subprocess.run(f'onnx2tf -i {onnx} --output_signaturedefs -o {f}', shell=True) subprocess.run(f'onnx2tf -i {onnx} -o {f} --non_verbose', shell=True)
# Add TFLite metadata # Add TFLite metadata
for tflite_file in Path(f).rglob('*.tflite'): for tflite_file in Path(f).rglob('*.tflite'):

@ -108,8 +108,8 @@ class YOLO:
Raises TypeError is model is not a PyTorch model Raises TypeError is model is not a PyTorch model
""" """
if not isinstance(self.model, nn.Module): if not isinstance(self.model, nn.Module):
raise TypeError(f"model='{self.model}' must be a PyTorch model, but is a different type. PyTorch models " raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. "
f"can be used to train, val, predict and export, i.e. " f"PyTorch models can be used to train, val, predict and export, i.e. "
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only " f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.") f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")
@ -240,7 +240,7 @@ class YOLO:
if RANK in {0, -1}: if RANK in {0, -1}:
self.model, _ = attempt_load_one_weight(str(self.trainer.best)) self.model, _ = attempt_load_one_weight(str(self.trainer.best))
self.overrides = self.model.args self.overrides = self.model.args
self.metrics_data = self.trainer.validator.metrics self.metrics_data = self.trainer.validator.metrics
def to(self, device): def to(self, device):
""" """

@ -221,11 +221,10 @@ def is_jupyter():
Returns: Returns:
bool: True if running inside a Jupyter Notebook, False otherwise. bool: True if running inside a Jupyter Notebook, False otherwise.
""" """
try: with contextlib.suppress(Exception):
from IPython import get_ipython from IPython import get_ipython
return get_ipython() is not None return get_ipython() is not None
except ImportError: return False
return False
def is_docker() -> bool: def is_docker() -> bool:
@ -287,11 +286,9 @@ def is_pytest_running():
Returns: Returns:
(bool): True if pytest is running, False otherwise. (bool): True if pytest is running, False otherwise.
""" """
try: with contextlib.suppress(Exception):
import sys
return "pytest" in sys.modules return "pytest" in sys.modules
except ImportError: return False
return False
def is_github_actions_ci() -> bool: def is_github_actions_ci() -> bool:

@ -1 +1,5 @@
from .base import add_integration_callbacks, default_callbacks from .base import add_integration_callbacks, default_callbacks
__all__ = [
'add_integration_callbacks',
'default_callbacks',]

@ -17,7 +17,6 @@ import numpy as np
import pkg_resources as pkg import pkg_resources as pkg
import psutil import psutil
import torch import torch
from IPython import display
from matplotlib import font_manager from matplotlib import font_manager
from ultralytics.yolo.utils import (AUTOINSTALL, LOGGER, ROOT, USER_CONFIG_DIR, TryExcept, colorstr, downloads, emojis, from ultralytics.yolo.utils import (AUTOINSTALL, LOGGER, ROOT, USER_CONFIG_DIR, TryExcept, colorstr, downloads, emojis,
@ -292,8 +291,10 @@ def check_yolo(verbose=True):
gib = 1 << 30 # bytes per GiB gib = 1 << 30 # bytes per GiB
ram = psutil.virtual_memory().total ram = psutil.virtual_memory().total
total, used, free = shutil.disk_usage("/") total, used, free = shutil.disk_usage("/")
display.clear_output()
s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)' s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)'
with contextlib.suppress(Exception): # clear display if ipython is installed
from IPython import display
display.clear_output()
else: else:
s = '' s = ''

@ -3,3 +3,5 @@
from ultralytics.yolo.v8.classify.predict import ClassificationPredictor, predict from ultralytics.yolo.v8.classify.predict import ClassificationPredictor, predict
from ultralytics.yolo.v8.classify.train import ClassificationTrainer, train from ultralytics.yolo.v8.classify.train import ClassificationTrainer, train
from ultralytics.yolo.v8.classify.val import ClassificationValidator, val from ultralytics.yolo.v8.classify.val import ClassificationValidator, val
__all__ = ["ClassificationPredictor", "predict", "ClassificationTrainer", "train", "ClassificationValidator", "val"]

@ -3,3 +3,5 @@
from .predict import DetectionPredictor, predict from .predict import DetectionPredictor, predict
from .train import DetectionTrainer, train from .train import DetectionTrainer, train
from .val import DetectionValidator, val from .val import DetectionValidator, val
__all__ = ["DetectionPredictor", "predict", "DetectionTrainer", "train", "DetectionValidator", "val"]

@ -3,3 +3,5 @@
from .predict import SegmentationPredictor, predict from .predict import SegmentationPredictor, predict
from .train import SegmentationTrainer, train from .train import SegmentationTrainer, train
from .val import SegmentationValidator, val from .val import SegmentationValidator, val
__all__ = ["SegmentationPredictor", "predict", "SegmentationTrainer", "train", "SegmentationValidator", "val"]

Loading…
Cancel
Save