`ultralytics 8.2.5` New 🌟 Parking Management Solution (#10385)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/10404/head v8.2.5
Muhammad Rizwan Munawar 7 months ago committed by GitHub
parent 156b6be8d3
commit bc9fd45cdf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 5
      docs/en/datasets/detect/roboflow-100.md
  2. 1
      docs/en/guides/index.md
  3. 116
      docs/en/guides/parking-management.md
  4. 20
      docs/en/reference/solutions/parking_management.md
  5. 5
      mkdocs.yml
  6. 2
      ultralytics/__init__.py
  7. 35
      ultralytics/solutions/heatmap.py
  8. 35
      ultralytics/solutions/object_counter.py
  9. 235
      ultralytics/solutions/parking_management.py
  10. 82
      ultralytics/utils/plotting.py

@ -48,6 +48,7 @@ Dataset benchmarking evaluates machine learning model performance on specific da
```python
from pathlib import Path
import shutil
import os
from ultralytics.utils.benchmarks import RF100Benchmark
# Initialize RF100Benchmark and set API key
@ -65,10 +66,10 @@ Dataset benchmarking evaluates machine learning model performance on specific da
if path.exists():
# Fix YAML file and run training
benchmark.fix_yaml(str(path))
Path.cwd().system(f'yolo detect train data={path} model=yolov8s.pt epochs=1 batch=16')
os.system(f'yolo detect train data={path} model=yolov8s.pt epochs=1 batch=16')
# Run validation and evaluate
Path.cwd().system(f'yolo detect val data={path} model=runs/detect/train/weights/best.pt > {val_log_file} 2>&1')
os.system(f'yolo detect val data={path} model=runs/detect/train/weights/best.pt > {val_log_file} 2>&1')
benchmark.evaluate(str(path), str(val_log_file), str(eval_log_file), ind)
# Remove the 'runs' directory

@ -57,6 +57,7 @@ Here's a compilation of in-depth guides to help you master different aspects of
- [Speed Estimation](speed-estimation.md) 🚀 NEW: Speed estimation in computer vision relies on analyzing object motion through techniques like [object tracking](https://docs.ultralytics.com/modes/track/), crucial for applications like autonomous vehicles and traffic monitoring.
- [Distance Calculation](distance-calculation.md) 🚀 NEW: Distance calculation, which involves measuring the separation between two objects within a defined space, is a crucial aspect. In the context of Ultralytics YOLOv8, the method employed for this involves using the bounding box centroid to determine the distance associated with user-highlighted bounding boxes.
- [Queue Management](queue-management.md) 🚀 NEW: Queue management is the practice of efficiently controlling and directing the flow of people or tasks, often through strategic planning and technology implementation, to minimize wait times and improve overall productivity.
- [Parking Management](parking-management.md) 🚀 NEW: Parking management involves efficiently organizing and directing the flow of vehicles in parking areas, often through strategic planning and technology integration, to optimize space utilization and enhance user experience.
## Contribute to Our Guides

@ -0,0 +1,116 @@
---
comments: true
description: Parking Management System Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Parking lots, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
---
# Parking Management using Ultralytics YOLOv8 🚀
## What is Parking Management System?
Parking management with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) ensures efficient and safe parking by organizing spaces and monitoring availability. YOLOv8 can improve parking lot management through real-time vehicle detection, and insights into parking occupancy.
## Advantages of Parking Management System?
- **Efficiency**: Parking lot management optimizes the use of parking spaces and reduces congestion.
- **Safety and Security**: Parking management using YOLOv8 improves the safety of both people and vehicles through surveillance and security measures.
- **Reduced Emissions**: Parking management using YOLOv8 manages traffic flow to minimize idle time and emissions in parking lots.
## Real World Applications
| Parking Management System | Parking Management System |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| ![Parking lots Analytics Using Ultralytics YOLOv8](https://github.com/RizwanMunawar/RizwanMunawar/assets/62513924/e3d4bc3e-cf4a-4da9-b42e-0da55cc74ad6) | ![Parking management top view using Ultralytics YOLOv8](https://github.com/RizwanMunawar/RizwanMunawar/assets/62513924/fe186719-1aca-43c9-b388-1ded91280eb5) |
| Parking management Aeriel View using Ultralytics YOLOv8 | Parking management Top View using Ultralytics YOLOv8 |
## Parking Management System Code Workflow
### Selection of Points
!!! Tip "Point Selection is now Easy"
Choosing parking points is a critical and complex task in parking management systems. Ultralytics streamlines this process by providing a tool that lets you define parking lot areas, which can be utilized later for additional processing.
- Capture a frame from the video or camera stream where you want to manage the parking lot.
- Use the provided code to launch a graphical interface, where you can select an image and start outlining parking regions by mouse click to create polygons.
!!! Warning "Image Size"
Max Image Size of 1920 * 1080 supported
```python
from ultralytics.solutions.parking_management import ParkingPtsSelection, tk
root = tk.Tk()
ParkingPtsSelection(root)
root.mainloop()
```
- After defining the parking areas with polygons, click `save` to store a JSON file with the data in your working directory.
![Ultralytics YOLOv8 Points Selection Demo](https://github.com/RizwanMunawar/RizwanMunawar/assets/62513924/72737b8a-0f0f-4efb-98ad-b917a0039535)
### Python Code for Parking Management
!!! Example "Parking management using YOLOv8 Example"
=== "Parking Management"
```python
import cv2
from ultralytics.solutions.parking_management import ParkingManagement
# Path to json file, that created with above point selection app
polygon_json_path = "bounding_boxes.json"
# Video Capture
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("parking management.avi", cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
# Initialize parking management object
management = ParkingManagement(model_path="yolov8n.pt")
while cap.isOpened():
ret, im0 = cap.read()
if not ret:
break
json_data = management.parking_regions_extraction(polygon_json_path)
results = management.model.track(im0, persist=True, show=False)
if results[0].boxes.id is not None:
boxes = results[0].boxes.xyxy.cpu().tolist()
clss = results[0].boxes.cls.cpu().tolist()
management.process_data(json_data, im0, boxes, clss)
management.display_frames(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
### Optional Arguments `ParkingManagement()`
| Name | Type | Default | Description |
|--------------------------|-------------|-------------------|-----------------------------------------------------|
| `occupied_region_color` | `RGB Color` | `(0, 255, 0)` | Parking space occupied region color |
| `available_region_color` | `RGB Color` | `(0, 0, 255)` | Parking space available region color |
| `margin` | `int` | `10` | Gap between text display for multiple classes count |
| `txt_color` | `RGB Color` | `(255, 255, 255)` | Foreground color for object counts text |
| `bg_color` | `RGB Color` | `(255, 255, 255)` | Rectangle behind text background color |
### Arguments `model.track`
| Name | Type | Default | Description |
|-----------|---------|----------------|-------------------------------------------------------------|
| `source` | `im0` | `None` | source directory for images or videos |
| `persist` | `bool` | `False` | persisting tracks between frames |
| `tracker` | `str` | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort' |
| `conf` | `float` | `0.3` | Confidence Threshold |
| `iou` | `float` | `0.5` | IOU Threshold |
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `verbose` | `bool` | `True` | Display the object tracking results |

@ -0,0 +1,20 @@
---
description: Parking management system using Ultralytics YOLO featuring cutting-edge technology for precise real-time occupancy and availability monitoring for parking lots.
keywords: Ultralytics YOLO, object tracking software, real-time counting solutions, video stream analysis, YOLOv8 object detection, AI surveillance, smart counting technology, computer vision, AI-powered tracking, object counting accuracy, video analytics tools, automated monitoring.
---
# Reference for `ultralytics/solutions/parking_management.py`
!!! Note
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/parking_management.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/parking_management.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/parking_management.py) 🛠. Thank you 🙏!
<br><br>
## ::: ultralytics.solutions.parking_management.ParkingManagement
<br><br>
## ::: ultralytics.solutions.parking_management.ParkingPtsSelection
<br><br>

@ -158,7 +158,8 @@ nav:
- datasets/index.md
- Guides:
- guides/index.md
- NEW 🚀 Explorer:
- New 🚀 Parking Management: guides/parking-management.md
- Explorer:
- datasets/explorer/index.md
- Languages:
- 🇬🇧&nbsp English: https://ultralytics.com/docs/
@ -301,6 +302,7 @@ nav:
- Speed Estimation: guides/speed-estimation.md
- Distance Calculation: guides/distance-calculation.md
- Queue Management: guides/queue-management.md
- Parking Management: guides/parking-management.md
- YOLOv5:
- yolov5/index.md
- Quickstart: yolov5/quickstart_tutorial.md
@ -499,6 +501,7 @@ nav:
- object_counter: reference/solutions/object_counter.md
- queue_management: reference/solutions/queue_management.md
- speed_estimation: reference/solutions/speed_estimation.md
- parking_management: reference/solutions/parking_management.md
- trackers:
- basetrack: reference/trackers/basetrack.md
- bot_sort: reference/trackers/bot_sort.md

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.2.4"
__version__ = "8.2.5"
from ultralytics.data.explorer.explorer import Explorer
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld

@ -190,9 +190,7 @@ class Heatmap:
for box, cls, track_id in zip(self.boxes, self.clss, self.track_ids):
# Store class info
if self.names[cls] not in self.class_wise_count:
if len(self.names[cls]) > 5:
self.names[cls] = self.names[cls][:5]
self.class_wise_count[self.names[cls]] = {"in": 0, "out": 0}
self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0}
if self.shape == "circle":
center = (int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2))
@ -225,10 +223,10 @@ class Heatmap:
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
self.in_counts += 1
self.class_wise_count[self.names[cls]]["in"] += 1
self.class_wise_count[self.names[cls]]["IN"] += 1
else:
self.out_counts += 1
self.class_wise_count[self.names[cls]]["out"] += 1
self.class_wise_count[self.names[cls]]["OUT"] += 1
# Count objects using line
elif len(self.count_reg_pts) == 2:
@ -239,10 +237,10 @@ class Heatmap:
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
self.in_counts += 1
self.class_wise_count[self.names[cls]]["in"] += 1
self.class_wise_count[self.names[cls]]["IN"] += 1
else:
self.out_counts += 1
self.class_wise_count[self.names[cls]]["out"] += 1
self.class_wise_count[self.names[cls]]["OUT"] += 1
else:
for box, cls in zip(self.boxes, self.clss):
@ -264,28 +262,21 @@ class Heatmap:
heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX)
heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap)
label = "Ultralytics Analytics \t"
labels_dict = {}
for key, value in self.class_wise_count.items():
if value["in"] != 0 or value["out"] != 0:
if value["IN"] != 0 or value["OUT"] != 0:
if not self.view_in_counts and not self.view_out_counts:
label = None
continue
elif not self.view_in_counts:
label += f"{str.capitalize(key)}: IN {value['in']} \t"
labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}"
elif not self.view_out_counts:
label += f"{str.capitalize(key)}: OUT {value['out']} \t"
labels_dict[str.capitalize(key)] = f"IN {value['IN']}"
else:
label += f"{str.capitalize(key)}: IN {value['in']} OUT {value['out']} \t"
labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"
label = label.rstrip()
label = label.split("\t")
if self.count_reg_pts is not None and label is not None:
self.annotator.display_counts(
counts=label,
count_txt_color=self.count_txt_color,
count_bg_color=self.count_bg_color,
)
if labels_dict is not None:
self.annotator.display_analytics(self.im0, labels_dict, self.count_txt_color, self.count_bg_color, 10)
self.im0 = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0)

@ -181,9 +181,7 @@ class ObjectCounter:
# Store class info
if self.names[cls] not in self.class_wise_count:
if len(self.names[cls]) > 5:
self.names[cls] = self.names[cls][:5]
self.class_wise_count[self.names[cls]] = {"in": 0, "out": 0}
self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0}
# Draw Tracks
track_line = self.track_history[track_id]
@ -210,10 +208,10 @@ class ObjectCounter:
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
self.in_counts += 1
self.class_wise_count[self.names[cls]]["in"] += 1
self.class_wise_count[self.names[cls]]["IN"] += 1
else:
self.out_counts += 1
self.class_wise_count[self.names[cls]]["out"] += 1
self.class_wise_count[self.names[cls]]["OUT"] += 1
# Count objects using line
elif len(self.reg_pts) == 2:
@ -224,33 +222,26 @@ class ObjectCounter:
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
self.in_counts += 1
self.class_wise_count[self.names[cls]]["in"] += 1
self.class_wise_count[self.names[cls]]["IN"] += 1
else:
self.out_counts += 1
self.class_wise_count[self.names[cls]]["out"] += 1
self.class_wise_count[self.names[cls]]["OUT"] += 1
label = "Ultralytics Analytics \t"
labels_dict = {}
for key, value in self.class_wise_count.items():
if value["in"] != 0 or value["out"] != 0:
if value["IN"] != 0 or value["OUT"] != 0:
if not self.view_in_counts and not self.view_out_counts:
label = None
continue
elif not self.view_in_counts:
label += f"{str.capitalize(key)}: IN {value['in']} \t"
labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}"
elif not self.view_out_counts:
label += f"{str.capitalize(key)}: OUT {value['out']} \t"
labels_dict[str.capitalize(key)] = f"IN {value['IN']}"
else:
label += f"{str.capitalize(key)}: IN {value['in']} OUT {value['out']} \t"
labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"
label = label.rstrip()
label = label.split("\t")
if label is not None:
self.annotator.display_counts(
counts=label,
count_txt_color=self.count_txt_color,
count_bg_color=self.count_bg_color,
)
if labels_dict is not None:
self.annotator.display_analytics(self.im0, labels_dict, self.count_txt_color, self.count_bg_color, 10)
def display_frames(self):
"""Display frame."""

@ -0,0 +1,235 @@
import json
from tkinter import filedialog, messagebox
import cv2
import numpy as np
from PIL import Image, ImageTk
from ultralytics.utils.checks import check_imshow, check_requirements
from ultralytics.utils.plotting import Annotator
check_requirements("tkinter")
import tkinter as tk
class ParkingPtsSelection:
def __init__(self, master):
# Initialize window and widgets.
self.master = master
master.title("Ultralytics Parking Zones Points Selector")
self.initialize_ui()
# Initialize properties
self.image_path = None
self.image = None
self.canvas_image = None
self.canvas = None
self.bounding_boxes = []
self.current_box = []
self.img_width = 0
self.img_height = 0
# Constants
self.canvas_max_width = 1280
self.canvas_max_height = 720
def initialize_ui(self):
"""Setup UI components."""
# Setup buttons
button_frame = tk.Frame(self.master)
button_frame.pack(side=tk.TOP)
tk.Button(button_frame, text="Upload Image", command=self.upload_image).grid(row=0, column=0)
tk.Button(button_frame, text="Remove Last BBox", command=self.remove_last_bounding_box).grid(row=0, column=1)
tk.Button(button_frame, text="Save", command=self.save_to_json).grid(row=0, column=2)
# Setup canvas for image display
self.canvas = tk.Canvas(self.master, bg="white")
self.canvas.pack(side=tk.BOTTOM)
self.canvas.bind("<Button-1>", self.on_canvas_click)
def upload_image(self):
"""Upload an image and resize it to fit canvas."""
self.image_path = filedialog.askopenfilename(filetypes=[("Image Files", "*.png;*.jpg;*.jpeg")])
if not self.image_path:
return
self.image = Image.open(self.image_path)
self.img_width, self.img_height = self.image.size
# Calculate the aspect ratio and resize image
aspect_ratio = self.img_width / self.img_height
if aspect_ratio > 1:
# Landscape orientation
canvas_width = min(self.canvas_max_width, self.img_width)
canvas_height = int(canvas_width / aspect_ratio)
else:
# Portrait orientation
canvas_height = min(self.canvas_max_height, self.img_height)
canvas_width = int(canvas_height * aspect_ratio)
self.canvas.config(width=canvas_width, height=canvas_height)
resized_image = self.image.resize((canvas_width, canvas_height), Image.LANCZOS)
self.canvas_image = ImageTk.PhotoImage(resized_image)
self.canvas.create_image(0, 0, anchor=tk.NW, image=self.canvas_image)
# Reset bounding boxes and current box
self.bounding_boxes = []
self.current_box = []
def on_canvas_click(self, event):
"""Handle mouse clicks on canvas to create points for bounding boxes."""
self.current_box.append((event.x, event.y))
if len(self.current_box) == 4:
self.bounding_boxes.append(self.current_box)
self.draw_bounding_box(self.current_box)
self.current_box = []
def draw_bounding_box(self, box):
"""Draw bounding box on canvas."""
for i in range(4):
x1, y1 = box[i]
x2, y2 = box[(i + 1) % 4]
self.canvas.create_line(x1, y1, x2, y2, fill="blue", width=2)
def remove_last_bounding_box(self):
"""Remove the last drawn bounding box from canvas."""
if self.bounding_boxes:
self.bounding_boxes.pop() # Remove the last bounding box
self.canvas.delete("all") # Clear the canvas
self.canvas.create_image(0, 0, anchor=tk.NW, image=self.canvas_image) # Redraw the image
# Redraw all bounding boxes
for box in self.bounding_boxes:
self.draw_bounding_box(box)
messagebox.showinfo("Success", "Last bounding box removed.")
else:
messagebox.showwarning("Warning", "No bounding boxes to remove.")
def save_to_json(self):
canvas_width, canvas_height = self.canvas.winfo_width(), self.canvas.winfo_height()
width_scaling_factor = self.img_width / canvas_width
height_scaling_factor = self.img_height / canvas_height
bounding_boxes_data = []
for box in self.bounding_boxes:
print("Bounding Box ", bounding_boxes_data)
rescaled_box = []
for x, y in box:
rescaled_x = int(x * width_scaling_factor)
rescaled_y = int(y * height_scaling_factor)
rescaled_box.append((rescaled_x, rescaled_y))
bounding_boxes_data.append({"points": rescaled_box})
with open("bounding_boxes.json", "w") as json_file:
json.dump(bounding_boxes_data, json_file, indent=4)
messagebox.showinfo("Success", "Bounding boxes saved to bounding_boxes.json")
class ParkingManagement:
def __init__(
self,
model_path,
txt_color=(0, 0, 0),
bg_color=(255, 255, 255),
occupied_region_color=(0, 255, 0),
available_region_color=(0, 0, 255),
margin=10,
):
# Model path and initialization
self.model_path = model_path
self.model = self.load_model()
# Labels dictionary
self.labels_dict = {"Occupancy": 0, "Available": 0}
# Visualization details
self.margin = margin
self.bg_color = bg_color
self.txt_color = txt_color
self.occupied_region_color = occupied_region_color
self.available_region_color = available_region_color
self.window_name = "Ultralytics YOLOv8 Parking Management System"
# Check if environment support imshow
self.env_check = check_imshow(warn=True)
def load_model(self):
"""Load the Ultralytics YOLOv8 model for inference and analytics."""
from ultralytics import YOLO
self.model = YOLO(self.model_path)
return self.model
def parking_regions_extraction(self, json_file):
"""
Extract parking regions from json file.
Args:
json_file (str): file that have all parking slot points
"""
with open(json_file, "r") as json_file:
json_data = json.load(json_file)
return json_data
def process_data(self, json_data, im0, boxes, clss):
"""
Process the model data for parking lot management.
Args:
json_data (str): json data for parking lot management
im0 (ndarray): inference image
boxes (list): bounding boxes data
clss (list): bounding boxes classes list
Returns:
filled_slots (int): total slots that are filled in parking lot
empty_slots (int): total slots that are available in parking lot
"""
annotator = Annotator(im0)
total_slots, filled_slots = len(json_data), 0
empty_slots = total_slots
for region in json_data:
points = region["points"]
points_array = np.array(points, dtype=np.int32).reshape((-1, 1, 2))
region_occupied = False
for box, cls in zip(boxes, clss):
x_center = int((box[0] + box[2]) / 2)
y_center = int((box[1] + box[3]) / 2)
text = f"{self.model.names[int(cls)]}"
annotator.display_objects_labels(
im0, text, self.txt_color, self.bg_color, x_center, y_center, self.margin
)
dist = cv2.pointPolygonTest(points_array, (x_center, y_center), False)
if dist >= 0:
region_occupied = True
break
color = self.occupied_region_color if region_occupied else self.available_region_color
cv2.polylines(im0, [points_array], isClosed=True, color=color, thickness=2)
if region_occupied:
filled_slots += 1
empty_slots -= 1
self.labels_dict["Occupancy"] = filled_slots
self.labels_dict["Available"] = empty_slots
annotator.display_analytics(im0, self.labels_dict, self.txt_color, self.bg_color, self.margin)
def display_frames(self, im0):
"""
Display frame.
Args:
im0 (ndarray): inference image
"""
if self.env_check:
cv2.namedWindow(self.window_name)
cv2.imshow(self.window_name, im0)
# Break Window
if cv2.waitKey(1) & 0xFF == ord("q"):
return

@ -419,51 +419,63 @@ class Annotator:
lineType=cv2.LINE_AA,
)
def display_counts(self, counts=None, count_bg_color=(0, 0, 0), count_txt_color=(255, 255, 255)):
### Parking management utils
def display_objects_labels(self, im0, text, txt_color, bg_color, x_center, y_center, margin):
"""
Display counts on im0 with text background and border.
Display the bounding boxes labels in parking management app.
Args:
counts (str): objects count data
count_bg_color (RGB Color): counts highlighter color
count_txt_color (RGB Color): counts display color
im0 (ndarray): inference image
text (str): object/class name
txt_color (bgr color): display color for text foreground
bg_color (bgr color): display color for text background
x_center (float): x position center point for bounding box
y_center (float): y position center point for bounding box
margin (int): gap between text and rectangle for better display
"""
tl = self.tf or round(0.002 * (self.im.shape[0] + self.im.shape[1]) / 2) + 1
tf = max(tl - 1, 1)
text_size = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]
text_x = x_center - text_size[0] // 2
text_y = y_center + text_size[1] // 2
t_sizes = [cv2.getTextSize(str(count), 0, fontScale=self.sf, thickness=self.tf)[0] for count in counts]
rect_x1 = text_x - margin
rect_y1 = text_y - text_size[1] - margin
rect_x2 = text_x + text_size[0] + margin
rect_y2 = text_y + margin
cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
cv2.putText(im0, text, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA)
max_text_width = max([size[0] for size in t_sizes])
max_text_height = max([size[1] for size in t_sizes])
text_x = self.im.shape[1] - int(self.im.shape[1] * 0.025 + max_text_width)
text_y = int(self.im.shape[0] * 0.025)
for i, count in enumerate(counts):
text_x_pos = text_x
text_y_pos = text_y + i * (max_text_height + 25 * tf)
# Draw the border
cv2.rectangle(
self.im,
(text_x_pos - (10 * tf), text_y_pos - (10 * tf)),
(text_x_pos + max_text_width + (10 * tf), text_y_pos + max_text_height + (10 * tf)),
count_bg_color,
-1,
)
# Parking lot and object counting app
def display_analytics(self, im0, text, txt_color, bg_color, margin):
"""
Display the overall statistics for parking lots
Args:
im0 (ndarray): inference image
text (dict): labels dictionary
txt_color (bgr color): display color for text foreground
bg_color (bgr color): display color for text background
margin (int): gap between text and rectangle for better display
"""
# Draw the count text
horizontal_gap = int(im0.shape[1] * 0.02)
vertical_gap = int(im0.shape[0] * 0.01)
text_y_offset = 0
for label, value in text.items():
txt = f"{label}: {value}"
text_size = cv2.getTextSize(txt, 0, int(self.sf * 1.5), int(self.tf * 1.5))[0]
text_x = im0.shape[1] - text_size[0] - margin * 2 - horizontal_gap
text_y = text_y_offset + text_size[1] + margin * 2 + vertical_gap
rect_x1 = text_x - margin * 2
rect_y1 = text_y - text_size[1] - margin * 2
rect_x2 = text_x + text_size[0] + margin * 2
rect_y2 = text_y + margin * 2
cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
cv2.putText(
self.im,
str(count),
(text_x_pos, text_y_pos + max_text_height),
0,
fontScale=self.sf,
color=count_txt_color,
thickness=self.tf,
lineType=cv2.LINE_AA,
im0, txt, (text_x, text_y), 0, int(self.sf * 1.5), txt_color, int(self.tf * 1.5), lineType=cv2.LINE_AA
)
text_y_offset = rect_y2
@staticmethod
def estimate_pose_angle(a, b, c):

Loading…
Cancel
Save