Add `integrations/gradio` Docs page (#7935)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: WangQvQ <1579093407@qq.com> Co-authored-by: Martin Pl <martin-plank@gmx.de> Co-authored-by: Mactarvish <Mactarvish@users.noreply.github.com>pull/7944/head
parent
2881cda483
commit
ba484929e3
5 changed files with 110 additions and 3 deletions
@ -0,0 +1,104 @@ |
||||
--- |
||||
comments: true |
||||
description: Learn to use Gradio and Ultralytics YOLOv8 for interactive object detection. Upload images and adjust detection parameters in real-time. |
||||
keywords: Gradio, Ultralytics YOLOv8, object detection, interactive AI, Python |
||||
--- |
||||
|
||||
# Interactive Object Detection: Gradio & Ultralytics YOLOv8 🚀 |
||||
|
||||
## Introduction to Interactive Object Detection |
||||
|
||||
This Gradio interface provides an easy and interactive way to perform object detection using the [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) model. Users can upload images and adjust parameters like confidence threshold and intersection-over-union (IoU) threshold to get real-time detection results. |
||||
|
||||
## Why Use Gradio for Object Detection? |
||||
|
||||
* **User-Friendly Interface:** Gradio offers a straightforward platform for users to upload images and visualize detection results without any coding requirement. |
||||
* **Real-Time Adjustments:** Parameters such as confidence and IoU thresholds can be adjusted on the fly, allowing for immediate feedback and optimization of detection results. |
||||
* **Broad Accessibility:** The Gradio web interface can be accessed by anyone, making it an excellent tool for demonstrations, educational purposes, and quick experiments. |
||||
|
||||
<img width="800" alt="Gradio example screenshot" src="https://github.com/WangQvQ/ultralytics/assets/58406737/5d906f10-fd62-4bcc-8856-ef3233102c1d"> |
||||
|
||||
## How to Install the Gradio |
||||
|
||||
```bash |
||||
pip install gradio |
||||
``` |
||||
|
||||
## How to Use the Interface |
||||
|
||||
1. **Upload Image:** Click on 'Upload Image' to choose an image file for object detection. |
||||
2. **Adjust Parameters:** |
||||
* **Confidence Threshold:** Slider to set the minimum confidence level for detecting objects. |
||||
* **IoU Threshold:** Slider to set the IoU threshold for distinguishing different objects. |
||||
3. **View Results:** The processed image with detected objects and their labels will be displayed. |
||||
|
||||
## Example Use Cases |
||||
|
||||
* **Sample Image 1:** Bus detection with default thresholds. |
||||
* **Sample Image 2:** Detection on a sports image with default thresholds. |
||||
|
||||
## Usage Example |
||||
|
||||
This section provides the Python code used to create the Gradio interface with the Ultralytics YOLOv8 model. Supports classification tasks, detection tasks, segmentation tasks, and key point tasks. |
||||
|
||||
```python |
||||
import PIL.Image as Image |
||||
import gradio as gr |
||||
|
||||
from ultralytics import ASSETS, YOLO |
||||
|
||||
model = YOLO("yolov8n.pt") |
||||
|
||||
|
||||
def predict_image(img, conf_threshold, iou_threshold): |
||||
results = model.predict( |
||||
source=img, |
||||
conf=conf_threshold, |
||||
iou=iou_threshold, |
||||
show_labels=True, |
||||
show_conf=True, |
||||
imgsz=640, |
||||
) |
||||
|
||||
for r in results: |
||||
im_array = r.plot() |
||||
im = Image.fromarray(im_array[..., ::-1]) |
||||
|
||||
return im |
||||
|
||||
|
||||
iface = gr.Interface( |
||||
fn=predict_image, |
||||
inputs=[ |
||||
gr.Image(type="pil", label="Upload Image"), |
||||
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), |
||||
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold") |
||||
], |
||||
outputs=gr.Image(type="pil", label="Result"), |
||||
title="Ultralytics Gradio", |
||||
description="Upload images for inference. The Ultralytics YOLOv8n model is used by default.", |
||||
examples=[ |
||||
[ASSETS / "bus.jpg", 0.25, 0.45], |
||||
[ASSETS / "zidane.jpg", 0.25, 0.45], |
||||
] |
||||
) |
||||
|
||||
if __name__ == '__main__': |
||||
iface.launch() |
||||
``` |
||||
|
||||
## Parameters Explanation |
||||
|
||||
| Parameter Name | Type | Description | |
||||
|------------------|---------|----------------------------------------------------------| |
||||
| `img` | `Image` | The image on which object detection will be performed. | |
||||
| `conf_threshold` | `float` | Confidence threshold for detecting objects. | |
||||
| `iou_threshold` | `float` | Intersection-over-union threshold for object separation. | |
||||
|
||||
### Gradio Interface Components |
||||
|
||||
| Component | Description | |
||||
|--------------|------------------------------------------| |
||||
| Image Input | To upload the image for detection. | |
||||
| Sliders | To adjust confidence and IoU thresholds. | |
||||
| Image Output | To display the detection results. | |
Loading…
Reference in new issue