|
|
|
@ -58,8 +58,17 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t |
|
|
|
|
# Run inference with bboxes prompt |
|
|
|
|
results = model("ultralytics/assets/zidane.jpg", bboxes=[439, 437, 524, 709]) |
|
|
|
|
|
|
|
|
|
# Run inference with points prompt |
|
|
|
|
results = model("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1]) |
|
|
|
|
# Run inference with single point |
|
|
|
|
results = predictor(points=[900, 370], labels=[1]) |
|
|
|
|
|
|
|
|
|
# Run inference with multiple points |
|
|
|
|
results = predictor(points=[[400, 370], [900, 370]], labels=[1, 1]) |
|
|
|
|
|
|
|
|
|
# Run inference with multiple points prompt per object |
|
|
|
|
results = predictor(points=[[[400, 370], [900, 370]]], labels=[[1, 1]]) |
|
|
|
|
|
|
|
|
|
# Run inference with negative points prompt |
|
|
|
|
results = predictor(points=[[[400, 370], [900, 370]]], labels=[[1, 0]]) |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
!!! example "Segment everything" |
|
|
|
@ -107,8 +116,16 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t |
|
|
|
|
predictor.set_image("ultralytics/assets/zidane.jpg") # set with image file |
|
|
|
|
predictor.set_image(cv2.imread("ultralytics/assets/zidane.jpg")) # set with np.ndarray |
|
|
|
|
results = predictor(bboxes=[439, 437, 524, 709]) |
|
|
|
|
|
|
|
|
|
# Run inference with single point prompt |
|
|
|
|
results = predictor(points=[900, 370], labels=[1]) |
|
|
|
|
|
|
|
|
|
# Run inference with multiple points prompt |
|
|
|
|
results = predictor(points=[[400, 370], [900, 370]], labels=[[1, 1]]) |
|
|
|
|
|
|
|
|
|
# Run inference with negative points prompt |
|
|
|
|
results = predictor(points=[[[400, 370], [900, 370]]], labels=[[1, 0]]) |
|
|
|
|
|
|
|
|
|
# Reset image |
|
|
|
|
predictor.reset_image() |
|
|
|
|
``` |
|
|
|
@ -245,6 +262,15 @@ model("ultralytics/assets/zidane.jpg", bboxes=[439, 437, 524, 709]) |
|
|
|
|
|
|
|
|
|
# Segment with points prompt |
|
|
|
|
model("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1]) |
|
|
|
|
|
|
|
|
|
# Segment with multiple points prompt |
|
|
|
|
model("ultralytics/assets/zidane.jpg", points=[[400, 370], [900, 370]], labels=[[1, 1]]) |
|
|
|
|
|
|
|
|
|
# Segment with multiple points prompt per object |
|
|
|
|
model("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 1]]) |
|
|
|
|
|
|
|
|
|
# Segment with negative points prompt. |
|
|
|
|
model("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 0]]) |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
Alternatively, you can run inference with SAM in the command line interface (CLI): |
|
|
|
|