|
|
|
@ -1023,9 +1023,43 @@ class Exporter: |
|
|
|
|
|
|
|
|
|
@try_export |
|
|
|
|
def export_mct(self, prefix=colorstr("Sony MCT:")): |
|
|
|
|
# pip install --upgrade -force-reinstall git+https://github.com/ambitious-octopus/model_optimization.git@get-output-fix |
|
|
|
|
import model_compression_toolkit as mct |
|
|
|
|
from torch import nn |
|
|
|
|
# pip install sony-custom-layers[torch] |
|
|
|
|
from sony_custom_layers.pytorch.object_detection.nms import multiclass_nms |
|
|
|
|
|
|
|
|
|
# pip install --upgrade -force-reinstall git+https://github.com/ambitious-octopus/model_optimization.git@get-output-fix |
|
|
|
|
class PostProcessWrapper(nn.Module): |
|
|
|
|
def __init__(self, |
|
|
|
|
model: nn.Module, |
|
|
|
|
score_threshold: float = 0.001, |
|
|
|
|
iou_threshold: float = 0.7, |
|
|
|
|
max_detections: int = 300): |
|
|
|
|
""" |
|
|
|
|
Wrapping PyTorch Module with multiclass_nms layer from sony_custom_layers. |
|
|
|
|
|
|
|
|
|
Args: |
|
|
|
|
model (nn.Module): Model instance. |
|
|
|
|
score_threshold (float): Score threshold for non-maximum suppression. |
|
|
|
|
iou_threshold (float): Intersection over union threshold for non-maximum suppression. |
|
|
|
|
max_detections (float): The number of detections to return. |
|
|
|
|
""" |
|
|
|
|
super(PostProcessWrapper, self).__init__() |
|
|
|
|
self.model = model |
|
|
|
|
self.score_threshold = score_threshold |
|
|
|
|
self.iou_threshold = iou_threshold |
|
|
|
|
self.max_detections = max_detections |
|
|
|
|
|
|
|
|
|
def forward(self, images): |
|
|
|
|
# model inference |
|
|
|
|
outputs = self.model(images) |
|
|
|
|
|
|
|
|
|
boxes = outputs[0] |
|
|
|
|
scores = outputs[1] |
|
|
|
|
nms = multiclass_nms(boxes=boxes, scores=scores, score_threshold=self.score_threshold, |
|
|
|
|
iou_threshold=self.iou_threshold, max_detections=self.max_detections) |
|
|
|
|
return nms |
|
|
|
|
|
|
|
|
|
def representative_dataset_gen(dataloader=self.get_int8_calibration_dataloader(prefix)): |
|
|
|
|
for batch in dataloader: |
|
|
|
|
img = batch["img"] |
|
|
|
@ -1054,11 +1088,15 @@ class Exporter: |
|
|
|
|
target_resource_utilization=resource_utilization, |
|
|
|
|
core_config=config, |
|
|
|
|
target_platform_capabilities=tpc) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Get working device |
|
|
|
|
device = mct.core.pytorch.pytorch_device_config.get_working_device() |
|
|
|
|
quant_model_pp = PostProcessWrapper(model=quant_model).to(device=device) |
|
|
|
|
f = str(self.file).replace(self.file.suffix, "_mct_model.onnx") |
|
|
|
|
mct.exporter.pytorch_export_model(model=quant_model, |
|
|
|
|
mct.exporter.pytorch_export_model(model=quant_model_pp, |
|
|
|
|
save_model_path=f, |
|
|
|
|
repr_dataset=representative_dataset_gen) |
|
|
|
|
|
|
|
|
|
return f, None |
|
|
|
|
|
|
|
|
|
def _add_tflite_metadata(self, file): |
|
|
|
|