`ultralytics 8.0.170` apply `is_list` fixes for torch.Tensor inputs (#4713)

Co-authored-by: Gezhi Zhang <765724965@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
pull/4735/head^2 v8.0.170
Glenn Jocher 1 year ago committed by GitHub
parent a1c1d6b483
commit aa9133bb88
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 4
      docs/reference/data/utils.md
  2. 4
      docs/reference/utils/__init__.md
  3. 4
      docs/reference/utils/ops.md
  4. 2
      ultralytics/__init__.py
  5. 2
      ultralytics/engine/results.py
  6. 13
      ultralytics/models/fastsam/predict.py
  7. 9
      ultralytics/models/nas/predict.py
  8. 12
      ultralytics/models/rtdetr/predict.py
  9. 7
      ultralytics/models/sam/predict.py
  10. 8
      ultralytics/models/yolo/classify/predict.py
  11. 9
      ultralytics/models/yolo/detect/predict.py
  12. 6
      ultralytics/models/yolo/pose/predict.py
  13. 13
      ultralytics/models/yolo/segment/predict.py
  14. 4
      ultralytics/utils/__init__.py
  15. 13
      ultralytics/utils/ops.py

@ -45,6 +45,10 @@ keywords: Ultralytics, data utils, YOLO, img2label_paths, exif_size, polygon2mas
## ::: ultralytics.data.utils.polygons2masks_overlap
<br><br>
---
## ::: ultralytics.data.utils.find_dataset_yaml
<br><br>
---
## ::: ultralytics.data.utils.check_det_dataset
<br><br>

@ -9,6 +9,10 @@ keywords: Ultralytics, Utils, utilitarian functions, colorstr, yaml_save, set_lo
Full source code for this file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/__init__.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/__init__.py). Help us fix any issues you see by submitting a [Pull Request](https://docs.ultralytics.com/help/contributing/) 🛠. Thank you 🙏!
---
## ::: ultralytics.utils.TQDM
<br><br>
---
## ::: ultralytics.utils.SimpleClass
<br><br>

@ -117,6 +117,10 @@ keywords: Ultralytics YOLO, Utility Operations, segment2box, make_divisible, cli
## ::: ultralytics.utils.ops.masks2segments
<br><br>
---
## ::: ultralytics.utils.ops.convert_torch2numpy_batch
<br><br>
---
## ::: ultralytics.utils.ops.clean_str
<br><br>

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.169'
__version__ = '8.0.170'
from ultralytics.models import RTDETR, SAM, YOLO
from ultralytics.models.fastsam import FastSAM

@ -205,7 +205,7 @@ class Results(SimpleClass):
```
"""
if img is None and isinstance(self.orig_img, torch.Tensor):
img = (self.orig_img[0].detach().permute(1, 2, 0).cpu().contiguous() * 255).to(torch.uint8).numpy()
img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()
# Deprecation warn TODO: remove in 8.2
if 'show_conf' in kwargs:

@ -30,21 +30,22 @@ class FastSAMPredictor(DetectionPredictor):
full_box[0][4] = p[0][critical_iou_index][:, 4]
full_box[0][6:] = p[0][critical_iou_index][:, 6:]
p[0][critical_iou_index] = full_box
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
for i, pred in enumerate(p):
orig_img = orig_imgs[i] if is_list else orig_imgs
orig_img = orig_imgs[i]
img_path = self.batch[0][i]
if not len(pred): # save empty boxes
masks = None
elif self.args.retina_masks:
if is_list:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
else:
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
if is_list:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
return results

@ -23,12 +23,13 @@ class NASPredictor(BasePredictor):
max_det=self.args.max_det,
classes=self.args.classes)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] if is_list else orig_imgs
if is_list:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
orig_img = orig_imgs[i]
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
img_path = self.batch[0][i]
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
return results

@ -27,8 +27,11 @@ class RTDETRPredictor(BasePredictor):
"""Postprocess predictions and returns a list of Results objects."""
nd = preds[0].shape[-1]
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
for i, bbox in enumerate(bboxes): # (300, 4)
bbox = ops.xywh2xyxy(bbox)
score, cls = scores[i].max(-1, keepdim=True) # (300, 1)
@ -36,11 +39,10 @@ class RTDETRPredictor(BasePredictor):
if self.args.classes is not None:
idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx
pred = torch.cat([bbox, score, cls], dim=-1)[idx] # filter
orig_img = orig_imgs[i] if is_list else orig_imgs
orig_img = orig_imgs[i]
oh, ow = orig_img.shape[:2]
if is_list:
pred[..., [0, 2]] *= ow
pred[..., [1, 3]] *= oh
pred[..., [0, 2]] *= ow
pred[..., [1, 3]] *= oh
img_path = self.batch[0][i]
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
return results

@ -312,10 +312,13 @@ class Predictor(BasePredictor):
pred_masks, pred_scores = preds[:2]
pred_bboxes = preds[2] if self.segment_all else None
names = dict(enumerate(str(i) for i in range(len(pred_masks))))
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
for i, masks in enumerate([pred_masks]):
orig_img = orig_imgs[i] if is_list else orig_imgs
orig_img = orig_imgs[i]
if pred_bboxes is not None:
pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False)
cls = torch.arange(len(pred_masks), dtype=torch.int32, device=pred_masks.device)

@ -4,7 +4,7 @@ import torch
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import DEFAULT_CFG
from ultralytics.utils import DEFAULT_CFG, ops
class ClassificationPredictor(BasePredictor):
@ -38,10 +38,12 @@ class ClassificationPredictor(BasePredictor):
def postprocess(self, preds, img, orig_imgs):
"""Post-processes predictions to return Results objects."""
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] if is_list else orig_imgs
orig_img = orig_imgs[i]
img_path = self.batch[0][i]
results.append(Results(orig_img, path=img_path, names=self.model.names, probs=pred))
return results

@ -29,12 +29,13 @@ class DetectionPredictor(BasePredictor):
max_det=self.args.max_det,
classes=self.args.classes)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] if is_list else orig_imgs
if is_list:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
orig_img = orig_imgs[i]
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
img_path = self.batch[0][i]
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
return results

@ -37,10 +37,12 @@ class PosePredictor(DetectionPredictor):
classes=self.args.classes,
nc=len(self.model.names))
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] if is_list else orig_imgs
orig_img = orig_imgs[i]
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape).round()
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape)

@ -32,21 +32,22 @@ class SegmentationPredictor(DetectionPredictor):
max_det=self.args.max_det,
nc=len(self.model.names),
classes=self.args.classes)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
for i, pred in enumerate(p):
orig_img = orig_imgs[i] if is_list else orig_imgs
orig_img = orig_imgs[i]
img_path = self.batch[0][i]
if not len(pred): # save empty boxes
masks = None
elif self.args.retina_masks:
if is_list:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
else:
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
if is_list:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
return results

@ -112,8 +112,8 @@ class TQDM(tqdm_original):
Custom Ultralytics tqdm class with different default arguments.
Args:
(*args): Positional arguments passed to original tqdm.
(**kwargs): Keyword arguments, with custom defaults applied.
*args (list): Positional arguments passed to original tqdm.
**kwargs (dict): Keyword arguments, with custom defaults applied.
"""
def __init__(self, *args, **kwargs):

@ -771,6 +771,19 @@ def masks2segments(masks, strategy='largest'):
return segments
def convert_torch2numpy_batch(batch: torch.Tensor) -> np.ndarray:
"""
Convert a batch of FP32 torch tensors (0.0-1.0) to a NumPy uint8 array (0-255), changing from BCHW to BHWC layout.
Args:
batch (torch.Tensor): Input tensor batch of shape (Batch, Channels, Height, Width) and dtype torch.float32.
Returns:
(np.ndarray): Output NumPy array batch of shape (Batch, Height, Width, Channels) and dtype uint8.
"""
return (batch.permute(0, 2, 3, 1).contiguous() * 255).clamp(0, 255).to(torch.uint8).cpu().numpy()
def clean_str(s):
"""
Cleans a string by replacing special characters with underscore _

Loading…
Cancel
Save