|
|
|
@ -137,11 +137,11 @@ class KeypointLoss(nn.Module): |
|
|
|
|
|
|
|
|
|
def forward(self, pred_kpts, gt_kpts, kpt_mask, area): |
|
|
|
|
"""Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints.""" |
|
|
|
|
d = (pred_kpts[..., 0] - gt_kpts[..., 0]).pow(2) + (pred_kpts[..., 1] - gt_kpts[..., 1]).pow(2) |
|
|
|
|
kpt_loss_factor = kpt_mask.shape[1] / (torch.sum(kpt_mask != 0, dim=1) + 1e-9) |
|
|
|
|
d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2 |
|
|
|
|
kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0)) / (torch.sum(kpt_mask != 0) + 1e-9) |
|
|
|
|
# e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula |
|
|
|
|
e = d / ((2 * self.sigmas).pow(2) * (area + 1e-9) * 2) # from cocoeval |
|
|
|
|
return (kpt_loss_factor.view(-1, 1) * ((1 - torch.exp(-e)) * kpt_mask)).mean() |
|
|
|
|
e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 # from cocoeval |
|
|
|
|
return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class v8DetectionLoss: |
|
|
|
@ -437,7 +437,6 @@ class v8PoseLoss(v8DetectionLoss): |
|
|
|
|
"""Criterion class for computing training losses.""" |
|
|
|
|
|
|
|
|
|
def __init__(self, model): # model must be de-paralleled |
|
|
|
|
"""Initializes v8PoseLoss with model, sets keypoint variables and declares a keypoint loss instance.""" |
|
|
|
|
super().__init__(model) |
|
|
|
|
self.kpt_shape = model.model[-1].kpt_shape |
|
|
|
|
self.bce_pose = nn.BCEWithLogitsLoss() |
|
|
|
@ -454,7 +453,7 @@ class v8PoseLoss(v8DetectionLoss): |
|
|
|
|
(self.reg_max * 4, self.nc), 1 |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
# B, grids, .. |
|
|
|
|
# b, grids, .. |
|
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous() |
|
|
|
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous() |
|
|
|
|
pred_kpts = pred_kpts.permute(0, 2, 1).contiguous() |
|
|
|
@ -463,7 +462,7 @@ class v8PoseLoss(v8DetectionLoss): |
|
|
|
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) |
|
|
|
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) |
|
|
|
|
|
|
|
|
|
# Targets |
|
|
|
|
# targets |
|
|
|
|
batch_size = pred_scores.shape[0] |
|
|
|
|
batch_idx = batch["batch_idx"].view(-1, 1) |
|
|
|
|
targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1) |
|
|
|
@ -471,7 +470,7 @@ class v8PoseLoss(v8DetectionLoss): |
|
|
|
|
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy |
|
|
|
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) |
|
|
|
|
|
|
|
|
|
# Pboxes |
|
|
|
|
# pboxes |
|
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) |
|
|
|
|
pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3) |
|
|
|
|
|
|
|
|
@ -486,11 +485,11 @@ class v8PoseLoss(v8DetectionLoss): |
|
|
|
|
|
|
|
|
|
target_scores_sum = max(target_scores.sum(), 1) |
|
|
|
|
|
|
|
|
|
# Cls loss |
|
|
|
|
# cls loss |
|
|
|
|
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way |
|
|
|
|
loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE |
|
|
|
|
|
|
|
|
|
# Bbox loss |
|
|
|
|
# bbox loss |
|
|
|
|
if fg_mask.sum(): |
|
|
|
|
target_bboxes /= stride_tensor |
|
|
|
|
loss[0], loss[4] = self.bbox_loss( |
|
|
|
@ -499,14 +498,23 @@ class v8PoseLoss(v8DetectionLoss): |
|
|
|
|
keypoints = batch["keypoints"].to(self.device).float().clone() |
|
|
|
|
keypoints[..., 0] *= imgsz[1] |
|
|
|
|
keypoints[..., 1] *= imgsz[0] |
|
|
|
|
|
|
|
|
|
loss[1], loss[2] = self.calculate_keypoints_loss( |
|
|
|
|
fg_mask, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts |
|
|
|
|
) |
|
|
|
|
for i in range(batch_size): |
|
|
|
|
if fg_mask[i].sum(): |
|
|
|
|
idx = target_gt_idx[i][fg_mask[i]] |
|
|
|
|
gt_kpt = keypoints[batch_idx.view(-1) == i][idx] # (n, 51) |
|
|
|
|
gt_kpt[..., 0] /= stride_tensor[fg_mask[i]] |
|
|
|
|
gt_kpt[..., 1] /= stride_tensor[fg_mask[i]] |
|
|
|
|
area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True) |
|
|
|
|
pred_kpt = pred_kpts[i][fg_mask[i]] |
|
|
|
|
kpt_mask = gt_kpt[..., 2] != 0 |
|
|
|
|
loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss |
|
|
|
|
# kpt_score loss |
|
|
|
|
if pred_kpt.shape[-1] == 3: |
|
|
|
|
loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss |
|
|
|
|
|
|
|
|
|
loss[0] *= self.hyp.box # box gain |
|
|
|
|
loss[1] *= self.hyp.pose # pose gain |
|
|
|
|
loss[2] *= self.hyp.kobj # kobj gain |
|
|
|
|
loss[1] *= self.hyp.pose / batch_size # pose gain |
|
|
|
|
loss[2] *= self.hyp.kobj / batch_size # kobj gain |
|
|
|
|
loss[3] *= self.hyp.cls # cls gain |
|
|
|
|
loss[4] *= self.hyp.dfl # dfl gain |
|
|
|
|
|
|
|
|
@ -521,73 +529,6 @@ class v8PoseLoss(v8DetectionLoss): |
|
|
|
|
y[..., 1] += anchor_points[:, [1]] - 0.5 |
|
|
|
|
return y |
|
|
|
|
|
|
|
|
|
def calculate_keypoints_loss( |
|
|
|
|
self, masks, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts |
|
|
|
|
): |
|
|
|
|
""" |
|
|
|
|
Calculate the keypoints loss for the model. |
|
|
|
|
|
|
|
|
|
This function calculates the keypoints loss and keypoints object loss for a given batch. The keypoints loss is |
|
|
|
|
based on the difference between the predicted keypoints and ground truth keypoints. The keypoints object loss is |
|
|
|
|
a binary classification loss that classifies whether a keypoint is present or not. |
|
|
|
|
|
|
|
|
|
Args: |
|
|
|
|
masks (torch.Tensor): Binary mask tensor indicating object presence, shape (BS, N_anchors). |
|
|
|
|
target_gt_idx (torch.Tensor): Index tensor mapping anchors to ground truth objects, shape (BS, N_anchors). |
|
|
|
|
keypoints (torch.Tensor): Ground truth keypoints, shape (N_kpts_in_batch, N_kpts_per_object, kpts_dim). |
|
|
|
|
batch_idx (torch.Tensor): Batch index tensor for keypoints, shape (N_kpts_in_batch, 1). |
|
|
|
|
stride_tensor (torch.Tensor): Stride tensor for anchors, shape (N_anchors, 1). |
|
|
|
|
target_bboxes (torch.Tensor): Ground truth boxes in (x1, y1, x2, y2) format, shape (BS, N_anchors, 4). |
|
|
|
|
pred_kpts (torch.Tensor): Predicted keypoints, shape (BS, N_anchors, N_kpts_per_object, kpts_dim). |
|
|
|
|
|
|
|
|
|
Returns: |
|
|
|
|
(tuple): Returns a tuple containing: |
|
|
|
|
- kpts_loss (torch.Tensor): The keypoints loss. |
|
|
|
|
- kpts_obj_loss (torch.Tensor): The keypoints object loss. |
|
|
|
|
""" |
|
|
|
|
batch_idx = batch_idx.flatten() |
|
|
|
|
batch_size = len(masks) |
|
|
|
|
|
|
|
|
|
# Find the maximum number of keypoints in a single image |
|
|
|
|
max_kpts = torch.unique(batch_idx, return_counts=True)[1].max() |
|
|
|
|
|
|
|
|
|
# Create a tensor to hold batched keypoints |
|
|
|
|
batched_keypoints = torch.zeros( |
|
|
|
|
(batch_size, max_kpts, keypoints.shape[1], keypoints.shape[2]), device=keypoints.device |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
# TODO: any idea how to vectorize this? |
|
|
|
|
# Fill batched_keypoints with keypoints based on batch_idx |
|
|
|
|
for i in range(batch_size): |
|
|
|
|
keypoints_i = keypoints[batch_idx == i] |
|
|
|
|
batched_keypoints[i, : keypoints_i.shape[0]] = keypoints_i |
|
|
|
|
|
|
|
|
|
# Expand dimensions of target_gt_idx to match the shape of batched_keypoints |
|
|
|
|
target_gt_idx_expanded = target_gt_idx.unsqueeze(-1).unsqueeze(-1) |
|
|
|
|
|
|
|
|
|
# Use target_gt_idx_expanded to select keypoints from batched_keypoints |
|
|
|
|
selected_keypoints = batched_keypoints.gather( |
|
|
|
|
1, target_gt_idx_expanded.expand(-1, -1, keypoints.shape[1], keypoints.shape[2]) |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
# Divide coordinates by stride |
|
|
|
|
selected_keypoints /= stride_tensor.view(1, -1, 1, 1) |
|
|
|
|
|
|
|
|
|
kpts_loss = 0 |
|
|
|
|
kpts_obj_loss = 0 |
|
|
|
|
|
|
|
|
|
if masks.any(): |
|
|
|
|
gt_kpt = selected_keypoints[masks] |
|
|
|
|
area = xyxy2xywh(target_bboxes[masks])[:, 2:].prod(1, keepdim=True) |
|
|
|
|
pred_kpt = pred_kpts[masks] |
|
|
|
|
kpt_mask = gt_kpt[..., 2] != 0 if gt_kpt.shape[-1] == 3 else torch.full_like(gt_kpt[..., 0], True) |
|
|
|
|
kpts_loss = self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss |
|
|
|
|
|
|
|
|
|
if pred_kpt.shape[-1] == 3: |
|
|
|
|
kpts_obj_loss = self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss |
|
|
|
|
|
|
|
|
|
return kpts_loss, kpts_obj_loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class v8ClassificationLoss: |
|
|
|
|
"""Criterion class for computing training losses.""" |
|
|
|
|