revert kpt loss

clean-exp-bk
Laughing-q 2 months ago
parent 052ebb8610
commit a953207f60
  1. 107
      ultralytics/utils/loss.py

@ -137,11 +137,11 @@ class KeypointLoss(nn.Module):
def forward(self, pred_kpts, gt_kpts, kpt_mask, area): def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
"""Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints.""" """Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
d = (pred_kpts[..., 0] - gt_kpts[..., 0]).pow(2) + (pred_kpts[..., 1] - gt_kpts[..., 1]).pow(2) d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2
kpt_loss_factor = kpt_mask.shape[1] / (torch.sum(kpt_mask != 0, dim=1) + 1e-9) kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0)) / (torch.sum(kpt_mask != 0) + 1e-9)
# e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula # e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula
e = d / ((2 * self.sigmas).pow(2) * (area + 1e-9) * 2) # from cocoeval e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 # from cocoeval
return (kpt_loss_factor.view(-1, 1) * ((1 - torch.exp(-e)) * kpt_mask)).mean() return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean()
class v8DetectionLoss: class v8DetectionLoss:
@ -437,7 +437,6 @@ class v8PoseLoss(v8DetectionLoss):
"""Criterion class for computing training losses.""" """Criterion class for computing training losses."""
def __init__(self, model): # model must be de-paralleled def __init__(self, model): # model must be de-paralleled
"""Initializes v8PoseLoss with model, sets keypoint variables and declares a keypoint loss instance."""
super().__init__(model) super().__init__(model)
self.kpt_shape = model.model[-1].kpt_shape self.kpt_shape = model.model[-1].kpt_shape
self.bce_pose = nn.BCEWithLogitsLoss() self.bce_pose = nn.BCEWithLogitsLoss()
@ -454,7 +453,7 @@ class v8PoseLoss(v8DetectionLoss):
(self.reg_max * 4, self.nc), 1 (self.reg_max * 4, self.nc), 1
) )
# B, grids, .. # b, grids, ..
pred_scores = pred_scores.permute(0, 2, 1).contiguous() pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous() pred_distri = pred_distri.permute(0, 2, 1).contiguous()
pred_kpts = pred_kpts.permute(0, 2, 1).contiguous() pred_kpts = pred_kpts.permute(0, 2, 1).contiguous()
@ -463,7 +462,7 @@ class v8PoseLoss(v8DetectionLoss):
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# Targets # targets
batch_size = pred_scores.shape[0] batch_size = pred_scores.shape[0]
batch_idx = batch["batch_idx"].view(-1, 1) batch_idx = batch["batch_idx"].view(-1, 1)
targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1) targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
@ -471,7 +470,7 @@ class v8PoseLoss(v8DetectionLoss):
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
# Pboxes # pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3) pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3)
@ -486,11 +485,11 @@ class v8PoseLoss(v8DetectionLoss):
target_scores_sum = max(target_scores.sum(), 1) target_scores_sum = max(target_scores.sum(), 1)
# Cls loss # cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
# Bbox loss # bbox loss
if fg_mask.sum(): if fg_mask.sum():
target_bboxes /= stride_tensor target_bboxes /= stride_tensor
loss[0], loss[4] = self.bbox_loss( loss[0], loss[4] = self.bbox_loss(
@ -499,14 +498,23 @@ class v8PoseLoss(v8DetectionLoss):
keypoints = batch["keypoints"].to(self.device).float().clone() keypoints = batch["keypoints"].to(self.device).float().clone()
keypoints[..., 0] *= imgsz[1] keypoints[..., 0] *= imgsz[1]
keypoints[..., 1] *= imgsz[0] keypoints[..., 1] *= imgsz[0]
for i in range(batch_size):
loss[1], loss[2] = self.calculate_keypoints_loss( if fg_mask[i].sum():
fg_mask, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts idx = target_gt_idx[i][fg_mask[i]]
) gt_kpt = keypoints[batch_idx.view(-1) == i][idx] # (n, 51)
gt_kpt[..., 0] /= stride_tensor[fg_mask[i]]
gt_kpt[..., 1] /= stride_tensor[fg_mask[i]]
area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True)
pred_kpt = pred_kpts[i][fg_mask[i]]
kpt_mask = gt_kpt[..., 2] != 0
loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss
# kpt_score loss
if pred_kpt.shape[-1] == 3:
loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss
loss[0] *= self.hyp.box # box gain loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.pose # pose gain loss[1] *= self.hyp.pose / batch_size # pose gain
loss[2] *= self.hyp.kobj # kobj gain loss[2] *= self.hyp.kobj / batch_size # kobj gain
loss[3] *= self.hyp.cls # cls gain loss[3] *= self.hyp.cls # cls gain
loss[4] *= self.hyp.dfl # dfl gain loss[4] *= self.hyp.dfl # dfl gain
@ -521,73 +529,6 @@ class v8PoseLoss(v8DetectionLoss):
y[..., 1] += anchor_points[:, [1]] - 0.5 y[..., 1] += anchor_points[:, [1]] - 0.5
return y return y
def calculate_keypoints_loss(
self, masks, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts
):
"""
Calculate the keypoints loss for the model.
This function calculates the keypoints loss and keypoints object loss for a given batch. The keypoints loss is
based on the difference between the predicted keypoints and ground truth keypoints. The keypoints object loss is
a binary classification loss that classifies whether a keypoint is present or not.
Args:
masks (torch.Tensor): Binary mask tensor indicating object presence, shape (BS, N_anchors).
target_gt_idx (torch.Tensor): Index tensor mapping anchors to ground truth objects, shape (BS, N_anchors).
keypoints (torch.Tensor): Ground truth keypoints, shape (N_kpts_in_batch, N_kpts_per_object, kpts_dim).
batch_idx (torch.Tensor): Batch index tensor for keypoints, shape (N_kpts_in_batch, 1).
stride_tensor (torch.Tensor): Stride tensor for anchors, shape (N_anchors, 1).
target_bboxes (torch.Tensor): Ground truth boxes in (x1, y1, x2, y2) format, shape (BS, N_anchors, 4).
pred_kpts (torch.Tensor): Predicted keypoints, shape (BS, N_anchors, N_kpts_per_object, kpts_dim).
Returns:
(tuple): Returns a tuple containing:
- kpts_loss (torch.Tensor): The keypoints loss.
- kpts_obj_loss (torch.Tensor): The keypoints object loss.
"""
batch_idx = batch_idx.flatten()
batch_size = len(masks)
# Find the maximum number of keypoints in a single image
max_kpts = torch.unique(batch_idx, return_counts=True)[1].max()
# Create a tensor to hold batched keypoints
batched_keypoints = torch.zeros(
(batch_size, max_kpts, keypoints.shape[1], keypoints.shape[2]), device=keypoints.device
)
# TODO: any idea how to vectorize this?
# Fill batched_keypoints with keypoints based on batch_idx
for i in range(batch_size):
keypoints_i = keypoints[batch_idx == i]
batched_keypoints[i, : keypoints_i.shape[0]] = keypoints_i
# Expand dimensions of target_gt_idx to match the shape of batched_keypoints
target_gt_idx_expanded = target_gt_idx.unsqueeze(-1).unsqueeze(-1)
# Use target_gt_idx_expanded to select keypoints from batched_keypoints
selected_keypoints = batched_keypoints.gather(
1, target_gt_idx_expanded.expand(-1, -1, keypoints.shape[1], keypoints.shape[2])
)
# Divide coordinates by stride
selected_keypoints /= stride_tensor.view(1, -1, 1, 1)
kpts_loss = 0
kpts_obj_loss = 0
if masks.any():
gt_kpt = selected_keypoints[masks]
area = xyxy2xywh(target_bboxes[masks])[:, 2:].prod(1, keepdim=True)
pred_kpt = pred_kpts[masks]
kpt_mask = gt_kpt[..., 2] != 0 if gt_kpt.shape[-1] == 3 else torch.full_like(gt_kpt[..., 0], True)
kpts_loss = self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss
if pred_kpt.shape[-1] == 3:
kpts_obj_loss = self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss
return kpts_loss, kpts_obj_loss
class v8ClassificationLoss: class v8ClassificationLoss:
"""Criterion class for computing training losses.""" """Criterion class for computing training losses."""

Loading…
Cancel
Save