|
|
|
@ -1074,7 +1074,6 @@ class Exporter: |
|
|
|
|
raise ValueError("MCT export is only supported for YOLOv8 detection models") |
|
|
|
|
check_requirements("model-compression-toolkit==2.1.1") |
|
|
|
|
import model_compression_toolkit as mct |
|
|
|
|
import onnx |
|
|
|
|
|
|
|
|
|
def representative_dataset_gen(dataloader=self.get_int8_calibration_dataloader(prefix)): |
|
|
|
|
for batch in dataloader: |
|
|
|
@ -1164,6 +1163,7 @@ class Exporter: |
|
|
|
|
f = Path(str(self.file).replace(self.file.suffix, "_mct_model.onnx")) # js dir |
|
|
|
|
mct.exporter.pytorch_export_model(model=quant_model, save_model_path=f, repr_dataset=representative_dataset_gen) |
|
|
|
|
|
|
|
|
|
import onnx |
|
|
|
|
model_onnx = onnx.load(f) # load onnx model |
|
|
|
|
for k, v in self.metadata.items(): |
|
|
|
|
meta = model_onnx.metadata_props.add() |
|
|
|
|