diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index b2d8221e18..e0eff35cb8 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -212,7 +212,8 @@ jobs: - uses: actions/checkout@v4 - uses: astral-sh/setup-uv@v4 - name: Install requirements - run: uv pip install --system . pytest-cov + shell: bash # for Windows compatibility + run: uv pip install --system -e . pytest-cov - name: Check environment run: | yolo checks diff --git a/docs/en/integrations/sony-imx500.md b/docs/en/integrations/sony-imx500.md index 88338ebb67..5dccbc5585 100644 --- a/docs/en/integrations/sony-imx500.md +++ b/docs/en/integrations/sony-imx500.md @@ -162,7 +162,7 @@ cd examples/imx500 Step 3: Run YOLOv8 object detection, using the labels.txt file that has been generated during the IMX500 export. ```bash -python imx500_object_detection_demo.py --model --fps 25 --bbox-normalization --ignore-dash-labels --bbox-order xy –labels +python imx500_object_detection_demo.py --model --fps 25 --bbox-normalization --ignore-dash-labels --bbox-order xy --labels ``` Then you will be able to see live inference output as follows