|
|
|
@ -162,7 +162,7 @@ cd examples/imx500 |
|
|
|
|
Step 3: Run YOLOv8 object detection, using the labels.txt file that has been generated during the IMX500 export. |
|
|
|
|
|
|
|
|
|
```bash |
|
|
|
|
python imx500_object_detection_demo.py --model <path to network.rpk> --fps 25 --bbox-normalization --ignore-dash-labels --bbox-order xy –labels <path to labels.txt> |
|
|
|
|
python imx500_object_detection_demo.py --model <path to network.rpk> --fps 25 --bbox-normalization --ignore-dash-labels --bbox-order xy --labels <path to labels.txt> |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
Then you will be able to see live inference output as follows |
|
|
|
|