`ultralytics 8.0.201` docs alt tags and fonts updates (#5886)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Michael Currie <mcurrie@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
pull/5952/head v8.0.201
Glenn Jocher 1 year ago committed by GitHub
parent 77fc5ccf02
commit a05edfbc27
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 4
      CONTRIBUTING.md
  2. 6
      docs/datasets/detect/index.md
  3. 2
      docs/datasets/obb/index.md
  4. 2
      docs/help/CI.md
  5. 2
      docs/index.md
  6. 2
      docs/modes/track.md
  7. 2
      docs/tasks/classify.md
  8. 2
      docs/tasks/detect.md
  9. 2
      docs/tasks/pose.md
  10. 2
      docs/tasks/segment.md
  11. 2
      docs/yolov5/index.md
  12. 2
      docs/yolov5/quickstart_tutorial.md
  13. 2
      docs/zh/index.md
  14. 7
      mkdocs.yml
  15. 2
      ultralytics/__init__.py
  16. 2
      ultralytics/data/loaders.py

@ -48,11 +48,11 @@ To allow your work to be integrated as seamlessly as possible, we advise you to:
- ✅ Verify your PR is **up-to-date** with `ultralytics/ultralytics` `main` branch. If your PR is behind you can update
your code by clicking the 'Update branch' button or by running `git pull` and `git merge main` locally.
<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 15" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
<p align="center"><img width="751" alt="PR recommendation 1" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
- ✅ Verify all YOLOv8 Continuous Integration (CI) **checks are passing**.
<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 03" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
<p align="center"><img width="751" alt="PR recommendation 2" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee

@ -34,15 +34,15 @@ names:
Labels for this format should be exported to YOLO format with one `*.txt` file per image. If there are no objects in an image, no `*.txt` file is required. The `*.txt` file should be formatted with one row per object in `class x_center y_center width height` format. Box coordinates must be in **normalized xywh** format (from 0 to 1). If your boxes are in pixels, you should divide `x_center` and `width` by image width, and `y_center` and `height` by image height. Class numbers should be zero-indexed (start with 0).
<p align="center"><img width="750" src="https://user-images.githubusercontent.com/26833433/91506361-c7965000-e886-11ea-8291-c72b98c25eec.jpg"></p>
<p align="center"><img width="750" src="https://user-images.githubusercontent.com/26833433/91506361-c7965000-e886-11ea-8291-c72b98c25eec.jpg" alt="Example labelled image"></p>
The label file corresponding to the above image contains 2 persons (class `0`) and a tie (class `27`):
<p align="center"><img width="428" src="https://user-images.githubusercontent.com/26833433/112467037-d2568c00-8d66-11eb-8796-55402ac0d62f.png"></p>
<p align="center"><img width="428" src="https://user-images.githubusercontent.com/26833433/112467037-d2568c00-8d66-11eb-8796-55402ac0d62f.png" alt="Example label file"></p>
When using the Ultralytics YOLO format, organize your training and validation images and labels as shown in the example below.
<p align="center"><img width="700" src="https://user-images.githubusercontent.com/26833433/134436012-65111ad1-9541-4853-81a6-f19a3468b75f.png"></p>
<p align="center"><img width="700" src="https://user-images.githubusercontent.com/26833433/134436012-65111ad1-9541-4853-81a6-f19a3468b75f.png" alt="Example dataset directory structure"></p>
## Usage

@ -20,7 +20,7 @@ class_index, x1, y1, x2, y2, x3, y3, x4, y4
Internally, YOLO processes losses and outputs in the `xywhr` format, which represents the bounding box's center point (xy), width, height, and rotation.
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/259471881-59020fe2-09a4-4dcc-acce-9b0f7cfa40ee.png"></p>
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/259471881-59020fe2-09a4-4dcc-acce-9b0f7cfa40ee.png" alt="OBB format examples"></p>
An example of a `*.txt` label file for the above image, which contains an object of class `0` in OBB format, could look like:

@ -28,7 +28,7 @@ Below is the table showing the status of these CI tests for our main repositorie
| [yolov5](https://github.com/ultralytics/yolov5) | [![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml) | [![Publish Docker Images](https://github.com/ultralytics/yolov5/actions/workflows/docker.yml/badge.svg)](https://github.com/ultralytics/yolov5/actions/workflows/docker.yml) | [![Check Broken links](https://github.com/ultralytics/yolov5/actions/workflows/links.yml/badge.svg)](https://github.com/ultralytics/yolov5/actions/workflows/links.yml) | [![CodeQL](https://github.com/ultralytics/yolov5/actions/workflows/codeql-analysis.yml/badge.svg)](https://github.com/ultralytics/yolov5/actions/workflows/codeql-analysis.yml) | |
| [ultralytics](https://github.com/ultralytics/ultralytics) | [![ultralytics CI](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml) | [![Publish Docker Images](https://github.com/ultralytics/ultralytics/actions/workflows/docker.yaml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/docker.yaml) | [![Check Broken links](https://github.com/ultralytics/ultralytics/actions/workflows/links.yml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/links.yml) | [![CodeQL](https://github.com/ultralytics/ultralytics/actions/workflows/codeql.yaml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/codeql.yaml) | [![Publish to PyPI and Deploy Docs](https://github.com/ultralytics/ultralytics/actions/workflows/publish.yml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/publish.yml) |
| [hub](https://github.com/ultralytics/hub) | [![HUB CI](https://github.com/ultralytics/hub/actions/workflows/ci.yaml/badge.svg)](https://github.com/ultralytics/hub/actions/workflows/ci.yaml) | | [![Check Broken links](https://github.com/ultralytics/hub/actions/workflows/links.yml/badge.svg)](https://github.com/ultralytics/hub/actions/workflows/links.yml) | | |
| [docs](https://github.com/ultralytics/docs) | | | | | [![pages-build-deployment](https://github.com/ultralytics/docs/actions/workflows/pages/pages-build-deployment/badge.svg)](https://github.com/ultralytics/docs/actions/workflows/pages/pages-build-deployment) [![Check Broken links](https://github.com/ultralytics/docs/actions/workflows/links.yml/badge.svg?branch=gh-pages)](https://github.com/ultralytics/docs/actions/workflows/links.yml) |
| [docs](https://github.com/ultralytics/docs) | | | | | [![pages-build-deployment](https://github.com/ultralytics/docs/actions/workflows/pages/pages-build-deployment/badge.svg)](https://github.com/ultralytics/docs/actions/workflows/pages/pages-build-deployment) [![Check Broken links](https://github.com/ultralytics/docs/actions/workflows/links.yml/badge.svg)](https://github.com/ultralytics/docs/actions/workflows/links.yml) |
Each badge shows the status of the last run of the corresponding CI test on the `main` branch of the respective repository. If a test fails, the badge will display a "failing" status, and if it passes, it will display a "passing" status.

@ -7,7 +7,7 @@ keywords: Ultralytics, YOLOv8, object detection, image segmentation, machine lea
<div align="center">
<p>
<a href="https://yolovision.ultralytics.com" target="_blank">
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
</p>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://codecov.io/github/ultralytics/ultralytics"><img src="https://codecov.io/github/ultralytics/ultralytics/branch/main/graph/badge.svg?token=HHW7IIVFVY" alt="Ultralytics Code Coverage"></a>

@ -6,7 +6,7 @@ keywords: Ultralytics, YOLO, object tracking, video streams, BoT-SORT, ByteTrack
# Multi-Object Tracking with Ultralytics YOLO
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418637-1d6250fd-1515-4c10-a844-a32818ae6d46.png">
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418637-1d6250fd-1515-4c10-a844-a32818ae6d46.png" alt="Multi-object tracking examples">
Object tracking in the realm of video analytics is a critical task that not only identifies the location and class of objects within the frame but also maintains a unique ID for each detected object as the video progresses. The applications are limitless—ranging from surveillance and security to real-time sports analytics.

@ -6,7 +6,7 @@ keywords: Ultralytics, YOLOv8, Image Classification, Pretrained Models, YOLOv8n-
# Image Classification
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418606-adf35c62-2e11-405d-84c6-b84e7d013804.png">
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418606-adf35c62-2e11-405d-84c6-b84e7d013804.png" alt="Image classification examples">
Image classification is the simplest of the three tasks and involves classifying an entire image into one of a set of predefined classes.

@ -6,7 +6,7 @@ keywords: YOLOv8, Ultralytics, object detection, pretrained models, training, va
# Object Detection
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418624-5785cb93-74c9-4541-9179-d5c6782d491a.png">
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418624-5785cb93-74c9-4541-9179-d5c6782d491a.png" alt="Object detection examples">
Object detection is a task that involves identifying the location and class of objects in an image or video stream.

@ -6,7 +6,7 @@ keywords: Ultralytics, YOLO, YOLOv8, pose estimation, keypoints detection, objec
# Pose Estimation
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418616-9811ac0b-a4a7-452a-8aba-484ba32bb4a8.png">
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418616-9811ac0b-a4a7-452a-8aba-484ba32bb4a8.png" alt="Pose estimation examples">
Pose estimation is a task that involves identifying the location of specific points in an image, usually referred to as keypoints. The keypoints can represent various parts of the object such as joints, landmarks, or other distinctive features. The locations of the keypoints are usually represented as a set of 2D `[x, y]` or 3D `[x, y, visible]`
coordinates.

@ -6,7 +6,7 @@ keywords: yolov8, instance segmentation, Ultralytics, COCO dataset, image segmen
# Instance Segmentation
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418644-7df320b8-098d-47f1-85c5-26604d761286.png">
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418644-7df320b8-098d-47f1-85c5-26604d761286.png" alt="Instance segmentation examples">
Instance segmentation goes a step further than object detection and involves identifying individual objects in an image and segmenting them from the rest of the image.

@ -9,7 +9,7 @@ keywords: Ultralytics, YOLOv5, Deep Learning, Object detection, PyTorch, Tutoria
<div align="center">
<p>
<a href="https://ultralytics.com/yolov5" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png" alt="Ultralytics YOLOv5 v7.0 banner"></a>
</p>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>

@ -71,4 +71,4 @@ python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml -
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" alt="YOLO training curves">

@ -9,7 +9,7 @@ keywords: Ultralytics, YOLOv8, 目标检测, 图像分割, 机器学习, 深度
<div align="center">
<p>
<a href="https://yolovision.ultralytics.com" target="_blank">
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
</p>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://codecov.io/github/ultralytics/ultralytics"><img src="https://codecov.io/github/ultralytics/ultralytics/branch/main/graph/badge.svg?token=HHW7IIVFVY" alt="Ultralytics Code Coverage"></a>

@ -17,9 +17,10 @@ theme:
favicon: assets/favicon.ico
icon:
repo: fontawesome/brands/github
font:
text: Helvetica
code: Roboto Mono
# Fonts disabled for faster page load times
# font:
# text: Helvetica
# code: Roboto Mono
palette:
# Palette toggle for light mode

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.200'
__version__ = '8.0.201'
from ultralytics.models import RTDETR, SAM, YOLO
from ultralytics.models.fastsam import FastSAM

@ -451,7 +451,7 @@ class LoadTensor:
im = im.unsqueeze(0)
if im.shape[2] % stride or im.shape[3] % stride:
raise ValueError(s)
if im.max() > 1.0:
if im.max() > 1.0 + torch.finfo(im.dtype).eps: # torch.float32 eps is 1.2e-07
LOGGER.warning(f'WARNING ⚠ torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. '
f'Dividing input by 255.')
im = im.float() / 255.0

Loading…
Cancel
Save