@ -47,7 +47,7 @@ To train a model on the ImageNette dataset for 100 epochs with a standard image
```bash
# Start training from a pretrained *.pt model
yolo detect train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
yolo classify train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
```
## Sample Images and Annotations
@ -82,7 +82,7 @@ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imag
```bash
# Start training from a pretrained *.pt model with ImageNette160
yolo detect train data=imagenette160 model=yolov8n-cls.pt epochs=100 imgsz=160
yolo classify train data=imagenette160 model=yolov8n-cls.pt epochs=100 imgsz=160
```
!!! Example "Train Example with ImageNette320"
@ -103,7 +103,7 @@ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imag
```bash
# Start training from a pretrained *.pt model with ImageNette320
yolo detect train data=imagenette320 model=yolov8n-cls.pt epochs=100 imgsz=320
yolo classify train data=imagenette320 model=yolov8n-cls.pt epochs=100 imgsz=320
```
These smaller versions of the dataset allow for rapid iterations during the development process while still providing valuable and realistic image classification tasks.
@ -140,7 +140,7 @@ To train a YOLO model on the ImageNette dataset for 100 epochs, you can use the
```bash
# Start training from a pretrained *.pt model
yolo detect train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
yolo classify train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
```
For more details, see the [Training ](../../modes/train.md ) documentation page.