Fix incorrect CLI commands in Datasets Docs (#14889)

pull/14557/head
Jan Knobloch 4 months ago committed by GitHub
parent eb184a6c07
commit 9ff33d67b6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 4
      docs/en/datasets/classify/caltech101.md
  2. 4
      docs/en/datasets/classify/caltech256.md
  3. 4
      docs/en/datasets/classify/cifar10.md
  4. 4
      docs/en/datasets/classify/cifar100.md
  5. 4
      docs/en/datasets/classify/fashion-mnist.md
  6. 4
      docs/en/datasets/classify/imagenet.md
  7. 4
      docs/en/datasets/classify/imagenet10.md
  8. 8
      docs/en/datasets/classify/imagenette.md
  9. 4
      docs/en/datasets/classify/imagewoof.md
  10. 4
      docs/en/datasets/classify/mnist.md
  11. 4
      docs/en/datasets/obb/index.md
  12. 4
      docs/en/datasets/pose/coco.md
  13. 4
      docs/en/datasets/pose/coco8-pose.md
  14. 2
      docs/en/datasets/pose/index.md
  15. 4
      docs/en/datasets/segment/coco.md
  16. 4
      docs/en/datasets/segment/coco8-seg.md
  17. 2
      docs/en/datasets/segment/index.md

@ -46,7 +46,7 @@ To train a YOLO model on the Caltech-101 dataset for 100 epochs, you can use the
```bash
# Start training from a pretrained *.pt model
yolo detect train data=caltech101 model=yolov8n-cls.pt epochs=100 imgsz=416
yolo classify train data=caltech101 model=yolov8n-cls.pt epochs=100 imgsz=416
```
## Sample Images and Annotations
@ -108,7 +108,7 @@ To train an Ultralytics YOLO model on the Caltech-101 dataset, you can use the p
```bash
# Start training from a pretrained *.pt model
yolo detect train data=caltech101 model=yolov8n-cls.pt epochs=100 imgsz=416
yolo classify train data=caltech101 model=yolov8n-cls.pt epochs=100 imgsz=416
```
For more detailed arguments and options, refer to the model [Training](../../modes/train.md) page.

@ -57,7 +57,7 @@ To train a YOLO model on the Caltech-256 dataset for 100 epochs, you can use the
```bash
# Start training from a pretrained *.pt model
yolo detect train data=caltech256 model=yolov8n-cls.pt epochs=100 imgsz=416
yolo classify train data=caltech256 model=yolov8n-cls.pt epochs=100 imgsz=416
```
## Sample Images and Annotations
@ -116,7 +116,7 @@ To train a YOLO model on the Caltech-256 dataset for 100 epochs, you can use the
```bash
# Start training from a pretrained *.pt model
yolo detect train data=caltech256 model=yolov8n-cls.pt epochs=100 imgsz=416
yolo classify train data=caltech256 model=yolov8n-cls.pt epochs=100 imgsz=416
```
### What are the most common use cases for the Caltech-256 dataset?

@ -60,7 +60,7 @@ To train a YOLO model on the CIFAR-10 dataset for 100 epochs with an image size
```bash
# Start training from a pretrained *.pt model
yolo detect train data=cifar10 model=yolov8n-cls.pt epochs=100 imgsz=32
yolo classify train data=cifar10 model=yolov8n-cls.pt epochs=100 imgsz=32
```
## Sample Images and Annotations
@ -114,7 +114,7 @@ To train a YOLO model on the CIFAR-10 dataset using Ultralytics, you can follow
```bash
# Start training from a pretrained *.pt model
yolo detect train data=cifar10 model=yolov8n-cls.pt epochs=100 imgsz=32
yolo classify train data=cifar10 model=yolov8n-cls.pt epochs=100 imgsz=32
```
For more details, refer to the model [Training](../../modes/train.md) page.

@ -49,7 +49,7 @@ To train a YOLO model on the CIFAR-100 dataset for 100 epochs with an image size
```bash
# Start training from a pretrained *.pt model
yolo detect train data=cifar100 model=yolov8n-cls.pt epochs=100 imgsz=32
yolo classify train data=cifar100 model=yolov8n-cls.pt epochs=100 imgsz=32
```
## Sample Images and Annotations
@ -107,7 +107,7 @@ You can train a YOLO model on the CIFAR-100 dataset using either Python or CLI c
```bash
# Start training from a pretrained *.pt model
yolo detect train data=cifar100 model=yolov8n-cls.pt epochs=100 imgsz=32
yolo classify train data=cifar100 model=yolov8n-cls.pt epochs=100 imgsz=32
```
For a comprehensive list of available arguments, please refer to the model [Training](../../modes/train.md) page.

@ -74,7 +74,7 @@ To train a CNN model on the Fashion-MNIST dataset for 100 epochs with an image s
```bash
# Start training from a pretrained *.pt model
yolo detect train data=fashion-mnist model=yolov8n-cls.pt epochs=100 imgsz=28
yolo classify train data=fashion-mnist model=yolov8n-cls.pt epochs=100 imgsz=28
```
## Sample Images and Annotations
@ -117,7 +117,7 @@ To train an Ultralytics YOLO model on the Fashion-MNIST dataset, you can use bot
=== "CLI"
```bash
yolo detect train data=fashion-mnist model=yolov8n-cls.pt epochs=100 imgsz=28
yolo classify train data=fashion-mnist model=yolov8n-cls.pt epochs=100 imgsz=28
```
For more detailed training parameters, refer to the [Training page](../../modes/train.md).

@ -59,7 +59,7 @@ To train a deep learning model on the ImageNet dataset for 100 epochs with an im
```bash
# Start training from a pretrained *.pt model
yolo train data=imagenet model=yolov8n-cls.pt epochs=100 imgsz=224
yolo classify train data=imagenet model=yolov8n-cls.pt epochs=100 imgsz=224
```
## Sample Images and Annotations
@ -120,7 +120,7 @@ To use a pretrained Ultralytics YOLO model for image classification on the Image
```bash
# Start training from a pretrained *.pt model
yolo train data=imagenet model=yolov8n-cls.pt epochs=100 imgsz=224
yolo classify train data=imagenet model=yolov8n-cls.pt epochs=100 imgsz=224
```
For more in-depth training instruction, refer to our [Training page](../../modes/train.md).

@ -45,7 +45,7 @@ To test a deep learning model on the ImageNet10 dataset with an image size of 22
```bash
# Start training from a pretrained *.pt model
yolo train data=imagenet10 model=yolov8n-cls.pt epochs=5 imgsz=224
yolo classify train data=imagenet10 model=yolov8n-cls.pt epochs=5 imgsz=224
```
## Sample Images and Annotations
@ -104,7 +104,7 @@ To test your deep learning model on the ImageNet10 dataset with an image size of
```bash
# Start training from a pretrained *.pt model
yolo train data=imagenet10 model=yolov8n-cls.pt epochs=5 imgsz=224
yolo classify train data=imagenet10 model=yolov8n-cls.pt epochs=5 imgsz=224
```
Refer to the [Training](../../modes/train.md) page for a comprehensive list of available arguments.

@ -47,7 +47,7 @@ To train a model on the ImageNette dataset for 100 epochs with a standard image
```bash
# Start training from a pretrained *.pt model
yolo detect train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
yolo classify train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
```
## Sample Images and Annotations
@ -82,7 +82,7 @@ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imag
```bash
# Start training from a pretrained *.pt model with ImageNette160
yolo detect train data=imagenette160 model=yolov8n-cls.pt epochs=100 imgsz=160
yolo classify train data=imagenette160 model=yolov8n-cls.pt epochs=100 imgsz=160
```
!!! Example "Train Example with ImageNette320"
@ -103,7 +103,7 @@ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imag
```bash
# Start training from a pretrained *.pt model with ImageNette320
yolo detect train data=imagenette320 model=yolov8n-cls.pt epochs=100 imgsz=320
yolo classify train data=imagenette320 model=yolov8n-cls.pt epochs=100 imgsz=320
```
These smaller versions of the dataset allow for rapid iterations during the development process while still providing valuable and realistic image classification tasks.
@ -140,7 +140,7 @@ To train a YOLO model on the ImageNette dataset for 100 epochs, you can use the
```bash
# Start training from a pretrained *.pt model
yolo detect train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
yolo classify train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
```
For more details, see the [Training](../../modes/train.md) documentation page.

@ -44,7 +44,7 @@ To train a CNN model on the ImageWoof dataset for 100 epochs with an image size
```bash
# Start training from a pretrained *.pt model
yolo detect train data=imagewoof model=yolov8n-cls.pt epochs=100 imgsz=224
yolo classify train data=imagewoof model=yolov8n-cls.pt epochs=100 imgsz=224
```
## Dataset Variants
@ -113,7 +113,7 @@ To train a Convolutional Neural Network (CNN) model on the ImageWoof dataset usi
=== "CLI"
```bash
yolo detect train data=imagewoof model=yolov8n-cls.pt epochs=100 imgsz=224
yolo classify train data=imagewoof model=yolov8n-cls.pt epochs=100 imgsz=224
```
For more details on available training arguments, refer to the [Training](../../modes/train.md) page.

@ -52,7 +52,7 @@ To train a CNN model on the MNIST dataset for 100 epochs with an image size of 3
```bash
# Start training from a pretrained *.pt model
cnn detect train data=mnist model=yolov8n-cls.pt epochs=100 imgsz=28
yolo classify train data=mnist model=yolov8n-cls.pt epochs=100 imgsz=28
```
## Sample Images and Annotations
@ -113,7 +113,7 @@ To train a model on the MNIST dataset using Ultralytics YOLO, you can follow the
```bash
# Start training from a pretrained *.pt model
cnn detect train data=mnist model=yolov8n-cls.pt epochs=100 imgsz=28
yolo classify train data=mnist model=yolov8n-cls.pt epochs=100 imgsz=28
```
For a detailed list of available training arguments, refer to the [Training](../../modes/train.md) page.

@ -50,7 +50,7 @@ To train a model using these OBB formats:
```bash
# Train a new YOLOv8n-OBB model on the DOTAv2 dataset
yolo detect train data=DOTAv1.yaml model=yolov8n.pt epochs=100 imgsz=640
yolo obb train data=DOTAv1.yaml model=yolov8n-obb.pt epochs=100 imgsz=640
```
## Supported Datasets
@ -125,7 +125,7 @@ Training a YOLOv8 model with OBBs involves ensuring your dataset is in the YOLO
```bash
# Train a new YOLOv8n-OBB model on the custom dataset
yolo detect train data=your_dataset.yaml model=yolov8n.pt epochs=100 imgsz=640
yolo obb train data=your_dataset.yaml model=yolov8n-obb.yaml epochs=100 imgsz=640
```
This ensures your model leverages the detailed OBB annotations for improved detection accuracy.

@ -71,7 +71,7 @@ To train a YOLOv8n-pose model on the COCO-Pose dataset for 100 epochs with an im
```bash
# Start training from a pretrained *.pt model
yolo detect train data=coco-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
yolo pose train data=coco-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
```
## Sample Images and Annotations
@ -133,7 +133,7 @@ Training a YOLOv8 model on the COCO-Pose dataset can be accomplished using eithe
```bash
# Start training from a pretrained *.pt model
yolo detect train data=coco-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
yolo pose train data=coco-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
```
For more details on the training process and available arguments, check the [training page](../../modes/train.md).

@ -44,7 +44,7 @@ To train a YOLOv8n-pose model on the COCO8-Pose dataset for 100 epochs with an i
```bash
# Start training from a pretrained *.pt model
yolo detect train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
```
## Sample Images and Annotations
@ -105,7 +105,7 @@ To train a YOLOv8n-pose model on the COCO8-Pose dataset for 100 epochs with an i
=== "CLI"
```bash
yolo detect train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
```
For a comprehensive list of training arguments, refer to the model [Training](../../modes/train.md) page.

@ -82,7 +82,7 @@ The `train` and `val` fields specify the paths to the directories containing the
```bash
# Start training from a pretrained *.pt model
yolo detect train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
```
## Supported Datasets

@ -69,7 +69,7 @@ To train a YOLOv8n-seg model on the COCO-Seg dataset for 100 epochs with an imag
```bash
# Start training from a pretrained *.pt model
yolo detect train data=coco-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
yolo segment train data=coco-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
```
## Sample Images and Annotations
@ -131,7 +131,7 @@ To train a YOLOv8n-seg model on the COCO-Seg dataset for 100 epochs with an imag
```bash
# Start training from a pretrained *.pt model
yolo detect train data=coco-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
yolo segment train data=coco-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
```
### What are the key features of the COCO-Seg dataset?

@ -44,7 +44,7 @@ To train a YOLOv8n-seg model on the COCO8-Seg dataset for 100 epochs with an ima
```bash
# Start training from a pretrained *.pt model
yolo detect train data=coco8-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
yolo segment train data=coco8-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
```
## Sample Images and Annotations
@ -106,7 +106,7 @@ To train a **YOLOv8n-seg** model on the COCO8-Seg dataset for 100 epochs with an
```bash
# Start training from a pretrained *.pt model
yolo detect train data=coco8-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
yolo segment train data=coco8-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
```
For a thorough explanation of available arguments and configuration options, you can check the [Training](../../modes/train.md) documentation.

@ -84,7 +84,7 @@ The `train` and `val` fields specify the paths to the directories containing the
```bash
# Start training from a pretrained *.pt model
yolo detect train data=coco8-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
yolo segment train data=coco8-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
```
## Supported Datasets

Loading…
Cancel
Save