Use `pathlib` in DOTA ops (#7552)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/7576/head
Glenn Jocher 1 year ago committed by GitHub
parent f6309b8e70
commit 9d4ffa43bc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      docker/Dockerfile-cpu
  2. 27
      ultralytics/data/split_dota.py
  3. 7
      ultralytics/models/sam/modules/encoders.py
  4. 8
      ultralytics/utils/benchmarks.py
  5. 26
      ultralytics/utils/callbacks/comet.py
  6. 4
      ultralytics/utils/loss.py

@ -32,7 +32,7 @@ RUN pip install --no-cache -e ".[export]" lancedb --extra-index-url https://down
RUN yolo export model=tmp/yolov8n.pt format=edgetpu imgsz=32
RUN yolo export model=tmp/yolov8n.pt format=ncnn imgsz=32
# Requires <= Python 3.10, bug with paddlepaddle==2.5.0 https://github.com/PaddlePaddle/X2Paddle/issues/991
# RUN pip install --no-cache paddlepaddle==2.4.2 x2paddle
# RUN pip install --no-cache paddlepaddle>=2.6.0 x2paddle
# Remove exported models
RUN rm -rf tmp

@ -1,7 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import itertools
import os
from glob import glob
from math import ceil
from pathlib import Path
@ -73,9 +72,9 @@ def load_yolo_dota(data_root, split="train"):
- val
"""
assert split in ["train", "val"]
im_dir = os.path.join(data_root, f"images/{split}")
assert Path(im_dir).exists(), f"Can't find {im_dir}, please check your data root."
im_files = glob(os.path.join(data_root, f"images/{split}/*"))
im_dir = Path(data_root) / "images" / split
assert im_dir.exists(), f"Can't find {im_dir}, please check your data root."
im_files = glob(str(Path(data_root) / "images" / split / "*"))
lb_files = img2label_paths(im_files)
annos = []
for im_file, lb_file in zip(im_files, lb_files):
@ -94,7 +93,7 @@ def get_windows(im_size, crop_sizes=[1024], gaps=[200], im_rate_thr=0.6, eps=0.0
Args:
im_size (tuple): Original image size, (h, w).
crop_sizes (List(int)): Crop size of windows.
gaps (List(int)): Gap between each crops.
gaps (List(int)): Gap between crops.
im_rate_thr (float): Threshold of windows areas divided by image ares.
"""
h, w = im_size
@ -173,7 +172,7 @@ def crop_and_save(anno, windows, window_objs, im_dir, lb_dir):
patch_im = im[y_start:y_stop, x_start:x_stop]
ph, pw = patch_im.shape[:2]
cv2.imwrite(os.path.join(im_dir, f"{new_name}.jpg"), patch_im)
cv2.imwrite(str(Path(im_dir) / f"{new_name}.jpg"), patch_im)
label = window_objs[i]
if len(label) == 0:
continue
@ -182,7 +181,7 @@ def crop_and_save(anno, windows, window_objs, im_dir, lb_dir):
label[:, 1::2] /= pw
label[:, 2::2] /= ph
with open(os.path.join(lb_dir, f"{new_name}.txt"), "w") as f:
with open(Path(lb_dir) / f"{new_name}.txt", "w") as f:
for lb in label:
formatted_coords = ["{:.6g}".format(coord) for coord in lb[1:]]
f.write(f"{int(lb[0])} {' '.join(formatted_coords)}\n")
@ -269,7 +268,7 @@ def split_test(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
save_dir = Path(save_dir) / "images" / "test"
save_dir.mkdir(parents=True, exist_ok=True)
im_dir = Path(os.path.join(data_root, "images/test"))
im_dir = Path(data_root) / "images" / "test"
assert im_dir.exists(), f"Can't find {im_dir}, please check your data root."
im_files = glob(str(im_dir / "*"))
for im_file in tqdm(im_files, total=len(im_files), desc="test"):
@ -281,15 +280,9 @@ def split_test(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
x_start, y_start, x_stop, y_stop = window.tolist()
new_name = f"{name}__{x_stop - x_start}__{x_start}___{y_start}"
patch_im = im[y_start:y_stop, x_start:x_stop]
cv2.imwrite(os.path.join(str(save_dir), f"{new_name}.jpg"), patch_im)
cv2.imwrite(str(save_dir / f"{new_name}.jpg"), patch_im)
if __name__ == "__main__":
split_trainval(
data_root="DOTAv2",
save_dir="DOTAv2-split",
)
split_test(
data_root="DOTAv2",
save_dir="DOTAv2-split",
)
split_trainval(data_root="DOTAv2", save_dir="DOTAv2-split")
split_test(data_root="DOTAv2", save_dir="DOTAv2-split")

@ -198,12 +198,7 @@ class PromptEncoder(nn.Module):
"""
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
def _embed_points(
self,
points: torch.Tensor,
labels: torch.Tensor,
pad: bool,
) -> torch.Tensor:
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
"""Embeds point prompts."""
points = points + 0.5 # Shift to center of pixel
if pad:

@ -84,12 +84,8 @@ def benchmark(
emoji, filename = "", None # export defaults
try:
assert i != 9 or LINUX, "Edge TPU export only supported on Linux"
if i == 5:
assert MACOS or LINUX, "CoreML export only supported on macOS and Linux"
elif i == 10:
assert MACOS or LINUX, "TF.js export only supported on macOS and Linux"
# elif i == 11:
# assert sys.version_info < (3, 11), "PaddlePaddle export only supported on Python<=3.10"
if i in {5, 10}: # CoreML and TF.js
assert MACOS or LINUX, "export only supported on macOS and Linux"
if "cpu" in device.type:
assert cpu, "inference not supported on CPU"
if "cuda" in device.type:

@ -105,12 +105,7 @@ def _fetch_trainer_metadata(trainer):
save_interval = curr_epoch % save_period == 0
save_assets = save and save_period > 0 and save_interval and not final_epoch
return dict(
curr_epoch=curr_epoch,
curr_step=curr_step,
save_assets=save_assets,
final_epoch=final_epoch,
)
return dict(curr_epoch=curr_epoch, curr_step=curr_step, save_assets=save_assets, final_epoch=final_epoch)
def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad):
@ -218,11 +213,7 @@ def _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch):
conf_mat = trainer.validator.confusion_matrix.matrix
names = list(trainer.data["names"].values()) + ["background"]
experiment.log_confusion_matrix(
matrix=conf_mat,
labels=names,
max_categories=len(names),
epoch=curr_epoch,
step=curr_step,
matrix=conf_mat, labels=names, max_categories=len(names), epoch=curr_epoch, step=curr_step
)
@ -294,12 +285,7 @@ def _log_plots(experiment, trainer):
def _log_model(experiment, trainer):
"""Log the best-trained model to Comet.ml."""
model_name = _get_comet_model_name()
experiment.log_model(
model_name,
file_or_folder=str(trainer.best),
file_name="best.pt",
overwrite=True,
)
experiment.log_model(model_name, file_or_folder=str(trainer.best), file_name="best.pt", overwrite=True)
def on_pretrain_routine_start(trainer):
@ -320,11 +306,7 @@ def on_train_epoch_end(trainer):
curr_epoch = metadata["curr_epoch"]
curr_step = metadata["curr_step"]
experiment.log_metrics(
trainer.label_loss_items(trainer.tloss, prefix="train"),
step=curr_step,
epoch=curr_epoch,
)
experiment.log_metrics(trainer.label_loss_items(trainer.tloss, prefix="train"), step=curr_step, epoch=curr_epoch)
if curr_epoch == 1:
_log_images(experiment, trainer.save_dir.glob("train_batch*.jpg"), curr_step)

@ -38,9 +38,7 @@ class VarifocalLoss(nn.Module):
class FocalLoss(nn.Module):
"""Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
def __init__(
self,
):
def __init__(self):
"""Initializer for FocalLoss class with no parameters."""
super().__init__()

Loading…
Cancel
Save