UltralyticsAssistant 6 months ago
parent adaee64f8f
commit 9a5fcfdadc
  1. 95
      ultralytics/engine/exporter.py
  2. 20
      ultralytics/nn/autobackend.py

@ -184,7 +184,9 @@ class Exporter:
flags = [x == fmt for x in fmts]
if sum(flags) != 1:
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn, mct = flags # export booleans
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn, mct = (
flags # export booleans
)
is_tf_format = any((saved_model, pb, tflite, edgetpu, tfjs))
if mct:
LOGGER.warning("WARNING ⚠ Sony MCT only supports int8 export, setting int8=True.")
@ -1020,21 +1022,24 @@ class Exporter:
# j.write(subst)
yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
return f, None
@try_export
def export_mct(self, prefix=colorstr("Sony MCT:")):
# pip install --upgrade -force-reinstall git+https://github.com/ambitious-octopus/model_optimization.git@get-output-fix
import model_compression_toolkit as mct
from torch import nn
# pip install sony-custom-layers[torch]
from sony_custom_layers.pytorch.object_detection.nms import multiclass_nms
from torch import nn
class PostProcessWrapper(nn.Module):
def __init__(self,
model: nn.Module,
score_threshold: float = 0.001,
iou_threshold: float = 0.7,
max_detections: int = 300):
def __init__(
self,
model: nn.Module,
score_threshold: float = 0.001,
iou_threshold: float = 0.7,
max_detections: int = 300,
):
"""
Wrapping PyTorch Module with multiclass_nms layer from sony_custom_layers.
@ -1056,49 +1061,59 @@ class Exporter:
boxes = outputs[0]
scores = outputs[1]
nms = multiclass_nms(boxes=boxes, scores=scores, score_threshold=self.score_threshold,
iou_threshold=self.iou_threshold, max_detections=self.max_detections)
nms = multiclass_nms(
boxes=boxes,
scores=scores,
score_threshold=self.score_threshold,
iou_threshold=self.iou_threshold,
max_detections=self.max_detections,
)
return nms
def representative_dataset_gen(dataloader=self.get_int8_calibration_dataloader(prefix)):
for batch in dataloader:
img = batch["img"]
img = img / 255.0
yield [img]
tpc = mct.get_target_platform_capabilities(fw_name="pytorch",
target_platform_name='imx500',
target_platform_version='v1')
mp_config = mct.core.MixedPrecisionQuantizationConfig(num_of_images=5,
use_hessian_based_scores=False)
config = mct.core.CoreConfig(mixed_precision_config=mp_config,
quantization_config=mct.core.QuantizationConfig(shift_negative_activation_correction=True))
resource_utilization_data = mct.core.pytorch_resource_utilization_data(in_model=self.model,
representative_data_gen=
representative_dataset_gen,
core_config=config,
target_platform_capabilities=tpc)
resource_utilization = mct.core.ResourceUtilization(weights_memory=resource_utilization_data.weights_memory * 0.75)
quant_model, _ = mct.ptq.pytorch_post_training_quantization(in_module=self.model,
representative_data_gen=
representative_dataset_gen,
target_resource_utilization=resource_utilization,
core_config=config,
target_platform_capabilities=tpc)
tpc = mct.get_target_platform_capabilities(
fw_name="pytorch", target_platform_name="imx500", target_platform_version="v1"
)
mp_config = mct.core.MixedPrecisionQuantizationConfig(num_of_images=5, use_hessian_based_scores=False)
config = mct.core.CoreConfig(
mixed_precision_config=mp_config,
quantization_config=mct.core.QuantizationConfig(shift_negative_activation_correction=True),
)
resource_utilization_data = mct.core.pytorch_resource_utilization_data(
in_model=self.model,
representative_data_gen=representative_dataset_gen,
core_config=config,
target_platform_capabilities=tpc,
)
resource_utilization = mct.core.ResourceUtilization(
weights_memory=resource_utilization_data.weights_memory * 0.75
)
quant_model, _ = mct.ptq.pytorch_post_training_quantization(
in_module=self.model,
representative_data_gen=representative_dataset_gen,
target_resource_utilization=resource_utilization,
core_config=config,
target_platform_capabilities=tpc,
)
# Get working device
device = mct.core.pytorch.pytorch_device_config.get_working_device()
quant_model_pp = PostProcessWrapper(model=quant_model).to(device=device)
f = str(self.file).replace(self.file.suffix, "_mct_model.onnx")
mct.exporter.pytorch_export_model(model=quant_model_pp,
save_model_path=f,
repr_dataset=representative_dataset_gen)
mct.exporter.pytorch_export_model(
model=quant_model_pp, save_model_path=f, repr_dataset=representative_dataset_gen
)
return f, None
def _add_tflite_metadata(self, file):
"""Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata."""
import flatbuffers

@ -106,23 +106,9 @@ class AutoBackend(nn.Module):
super().__init__()
w = str(weights[0] if isinstance(weights, list) else weights)
nn_module = isinstance(weights, torch.nn.Module)
(
pt,
jit,
onnx,
xml,
engine,
coreml,
saved_model,
pb,
tflite,
edgetpu,
tfjs,
paddle,
ncnn,
triton,
mct
) = self._model_type(w)
(pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn, triton, mct) = (
self._model_type(w)
)
fp16 &= pt or jit or onnx or xml or engine or nn_module or triton # FP16
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
stride = 32 # default stride

Loading…
Cancel
Save