`ultralytics 8.0.209` fix P6 model validation (#6261)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Jie Li <32835610+jedi007@users.noreply.github.com>
Co-authored-by: Haruto Watahiki <43723360+WATA-Haru@users.noreply.github.com>
pull/6460/head^2 v8.0.209
Glenn Jocher 1 year ago committed by GitHub
parent 87233ea17c
commit 9a5891444e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      .github/ISSUE_TEMPLATE/bug-report.yml
  2. 2
      .github/ISSUE_TEMPLATE/feature-request.yml
  3. 2
      .github/ISSUE_TEMPLATE/question.yml
  4. 32
      .github/workflows/codeql.yaml
  5. 4
      .github/workflows/greetings.yml
  6. 2
      README.zh-CN.md
  7. 2
      docs/README.md
  8. 2
      docs/de/tasks/classify.md
  9. 2
      docs/de/tasks/detect.md
  10. 2
      docs/de/tasks/pose.md
  11. 2
      docs/de/tasks/segment.md
  12. 2
      docs/en/guides/hyperparameter-tuning.md
  13. 2
      docs/es/tasks/classify.md
  14. 2
      docs/es/tasks/detect.md
  15. 2
      docs/es/tasks/pose.md
  16. 2
      docs/es/tasks/segment.md
  17. 4
      docs/fr/tasks/classify.md
  18. 2
      docs/fr/tasks/detect.md
  19. 2
      docs/fr/tasks/pose.md
  20. 2
      docs/fr/tasks/segment.md
  21. 2
      docs/ja/tasks/classify.md
  22. 2
      docs/ja/tasks/detect.md
  23. 2
      docs/ja/tasks/pose.md
  24. 2
      docs/ja/tasks/segment.md
  25. 2
      docs/ko/tasks/classify.md
  26. 2
      docs/ko/tasks/detect.md
  27. 2
      docs/ko/tasks/pose.md
  28. 2
      docs/ko/tasks/segment.md
  29. 2
      docs/mkdocs.yml
  30. 42
      docs/mkdocs_de.yml
  31. 4
      docs/mkdocs_es.yml
  32. 4
      docs/mkdocs_fr.yml
  33. 4
      docs/mkdocs_ja.yml
  34. 4
      docs/mkdocs_ko.yml
  35. 4
      docs/mkdocs_pt.yml
  36. 4
      docs/mkdocs_ru.yml
  37. 4
      docs/mkdocs_zh.yml
  38. 2
      docs/pt/tasks/classify.md
  39. 2
      docs/pt/tasks/detect.md
  40. 2
      docs/pt/tasks/pose.md
  41. 2
      docs/pt/tasks/segment.md
  42. 2
      docs/ru/tasks/classify.md
  43. 2
      docs/ru/tasks/detect.md
  44. 2
      docs/ru/tasks/pose.md
  45. 2
      docs/ru/tasks/segment.md
  46. 2
      ultralytics/__init__.py
  47. 3
      ultralytics/engine/validator.py
  48. 4
      ultralytics/models/yolo/detect/val.py

@ -12,7 +12,7 @@ body:
attributes:
label: Search before asking
description: >
Please search the [issues](https://github.com/ultralytics/ultralytics/issues) to see if a similar bug report already exists.
Please search the Ultralytics [Docs](https://docs.ultralytics.com) and [issues](https://github.com/ultralytics/ultralytics/issues) to see if a similar bug report already exists.
options:
- label: >
I have searched the YOLOv8 [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report.

@ -12,7 +12,7 @@ body:
attributes:
label: Search before asking
description: >
Please search the [issues](https://github.com/ultralytics/ultralytics/issues) to see if a similar feature request already exists.
Please search the Ultralytics [Docs](https://docs.ultralytics.com) and [issues](https://github.com/ultralytics/ultralytics/issues) to see if a similar feature request already exists.
options:
- label: >
I have searched the YOLOv8 [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar feature requests.

@ -12,7 +12,7 @@ body:
attributes:
label: Search before asking
description: >
Please search the [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/ultralytics/ultralytics/discussions) to see if a similar question already exists.
Please search the Ultralytics [Docs](https://docs.ultralytics.com), [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/ultralytics/ultralytics/discussions) to see if a similar question already exists.
options:
- label: >
I have searched the YOLOv8 [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/ultralytics/ultralytics/discussions) and found no similar questions.

@ -19,24 +19,24 @@ jobs:
strategy:
fail-fast: false
matrix:
language: [ 'python' ]
language: ['python']
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python', 'ruby' ]
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Checkout repository
uses: actions/checkout@v4
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v2
with:
languages: ${{ matrix.language }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# queries: security-extended,security-and-quality
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v2
with:
languages: ${{ matrix.language }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# queries: security-extended,security-and-quality
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v2
with:
category: "/language:${{matrix.language}}"
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v2
with:
category: "/language:${{matrix.language}}"

@ -16,7 +16,7 @@ jobs:
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
pr-message: |
👋 Hello @${{ github.actor }}, thank you for submitting a YOLOv8 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
👋 Hello @${{ github.actor }}, thank you for submitting an Ultralytics YOLOv8 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
- ✅ Verify your PR is **up-to-date** with `ultralytics/ultralytics` `main` branch. If your PR is behind you can update your code by clicking the 'Update branch' button or by running `git pull` and `git merge main` locally.
- ✅ Verify all YOLOv8 Continuous Integration (CI) **checks are passing**.
@ -26,7 +26,7 @@ jobs:
See our [Contributing Guide](https://docs.ultralytics.com/help/contributing) for details and let us know if you have any questions!
issue-message: |
👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv8 🚀! We recommend a visit to the [YOLOv8 Docs](https://docs.ultralytics.com) for new users where you can find many [Python](https://docs.ultralytics.com/usage/python/) and [CLI](https://docs.ultralytics.com/usage/cli/) usage examples and where many of the most common questions may already be answered.
👋 Hello @${{ github.actor }}, thank you for your interest in Ultralytics YOLOv8 🚀! We recommend a visit to the [Docs](https://docs.ultralytics.com) for new users where you can find many [Python](https://docs.ultralytics.com/usage/python/) and [CLI](https://docs.ultralytics.com/usage/cli/) usage examples and where many of the most common questions may already be answered.
If this is a 🐛 Bug Report, please provide a [minimum reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/) to help us debug it.

@ -46,7 +46,7 @@
## <div align="center">文档</div>
请参阅下面的快速安装和使用示例,以及 [YOLOv8 文档](https://docs.ultralytics.com) 上有关训、验证、预测和部署的完整文档。
请参阅下面的快速安装和使用示例,以及 [YOLOv8 文档](https://docs.ultralytics.com) 上有关训、验证、预测和部署的完整文档。
<details open>
<summary>安装</summary>

@ -79,6 +79,8 @@ For multi-language MkDocs sites use the following additional steps:
open http://localhost:8000 # on macOS
```
Note the above steps are combined into the Ultralytics [build_docs.py](https://github.com/ultralytics/ultralytics/blob/main/docs/build_docs.py) script.
### Deploying Your Documentation Site
To deploy your MkDocs documentation site, you will need to choose a hosting provider and a deployment method. Some popular options include GitHub Pages, GitLab Pages, and Amazon S3.

@ -70,7 +70,7 @@ Trainieren Sie das YOLOv8n-cls-Modell auf dem MNIST160-Datensatz für 100 Epoche
### Datenformat
Das Datenformat für YOLO-Klassifizierungsdatensätze finden Sie im Detail im [Datenleitfaden](../../datasets/classify/index.md).
Das Datenformat für YOLO-Klassifizierungsdatensätze finden Sie im Detail im [Datenleitfaden](../../../datasets/classify/index.md).
## Validieren

@ -80,7 +80,7 @@ YOLOv8n auf dem COCO128-Datensatz für 100 Epochen bei Bildgröße 640 trainiere
### Datenformat
Das Datenformat für YOLO-Erkennungsdatensätze finden Sie detailliert im [Dataset Guide](../../datasets/detect/index.md). Um Ihren vorhandenen Datensatz von anderen Formaten (wie COCO etc.) in das YOLO-Format zu konvertieren, verwenden Sie bitte das [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO)-Tool von Ultralytics.
Das Datenformat für YOLO-Erkennungsdatensätze finden Sie detailliert im [Dataset Guide](../../../datasets/detect/index.md). Um Ihren vorhandenen Datensatz von anderen Formaten (wie COCO etc.) in das YOLO-Format zu konvertieren, verwenden Sie bitte das [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO)-Tool von Ultralytics.
## Validierung

@ -81,7 +81,7 @@ Trainieren Sie ein YOLOv8-Pose-Modell auf dem COCO128-Pose-Datensatz.
### Datensatzformat
Das YOLO-Pose-Datensatzformat finden Sie detailliert im [Datensatz-Leitfaden](../../datasets/pose/index.md). Um Ihren bestehenden Datensatz aus anderen Formaten (wie COCO usw.) in das YOLO-Format zu konvertieren, verwenden Sie bitte das [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO)-Tool von Ultralytics.
Das YOLO-Pose-Datensatzformat finden Sie detailliert im [Datensatz-Leitfaden](../../../datasets/pose/index.md). Um Ihren bestehenden Datensatz aus anderen Formaten (wie COCO usw.) in das YOLO-Format zu konvertieren, verwenden Sie bitte das [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO)-Tool von Ultralytics.
## Validieren

@ -80,7 +80,7 @@ Trainieren Sie YOLOv8n-seg auf dem COCO128-seg-Datensatz für 100 Epochen mit ei
### Datenformat
Das YOLO Segmentierungsdatenformat finden Sie detailliert im [Dataset Guide](../../datasets/segment/index.md). Um Ihre vorhandenen Daten aus anderen Formaten (wie COCO usw.) in das YOLO-Format umzuwandeln, verwenden Sie bitte das [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO)-Tool von Ultralytics.
Das YOLO Segmentierungsdatenformat finden Sie detailliert im [Dataset Guide](../../../datasets/segment/index.md). Um Ihre vorhandenen Daten aus anderen Formaten (wie COCO usw.) in das YOLO-Format umzuwandeln, verwenden Sie bitte das [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO)-Tool von Ultralytics.
## Val

@ -188,7 +188,7 @@ This file contains scatter plots generated from `tune_results.csv`, helping you
This directory contains the saved PyTorch models for the last and the best iterations during the hyperparameter tuning process.
- **`last.pt`**: The last.pt weights for the iteration that achieved the best fitness score.
- **`last.pt`**: The last.pt are the weights from the last epoch of training.
- **`best.pt`**: The best.pt weights for the iteration that achieved the best fitness score.
Using these results, you can make more informed decisions for your future model trainings and analyses. Feel free to consult these artifacts to understand how well your model performed and how you might improve it further.

@ -70,7 +70,7 @@ Entrena el modelo YOLOv8n-cls en el conjunto de datos MNIST160 durante 100 époc
### Formato del conjunto de datos
El formato del conjunto de datos de clasificación YOLO puede encontrarse en detalle en la [Guía de Conjuntos de Datos](../../datasets/classify/index.md).
El formato del conjunto de datos de clasificación YOLO puede encontrarse en detalle en la [Guía de Conjuntos de Datos](../../../datasets/classify/index.md).
## Validación

@ -80,7 +80,7 @@ Entrena a YOLOv8n en el conjunto de datos COCO128 durante 100 épocas a tamaño
### Formato del conjunto de datos
El formato del conjunto de datos de detección de YOLO se puede encontrar en detalle en la [Guía de Conjuntos de Datos](../../datasets/detect/index.md). Para convertir tu conjunto de datos existente desde otros formatos (como COCO, etc.) al formato YOLO, por favor usa la herramienta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) de Ultralytics.
El formato del conjunto de datos de detección de YOLO se puede encontrar en detalle en la [Guía de Conjuntos de Datos](../../../datasets/detect/index.md). Para convertir tu conjunto de datos existente desde otros formatos (como COCO, etc.) al formato YOLO, por favor usa la herramienta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) de Ultralytics.
## Validación

@ -81,7 +81,7 @@ Entrena un modelo YOLOv8-pose en el conjunto de datos COCO128-pose.
### Formato del conjunto de datos
El formato del conjunto de datos de pose de YOLO se puede encontrar en detalle en la [Guía de Conjuntos de Datos](../../datasets/pose/index.md). Para convertir tu conjunto de datos existente de otros formatos (como COCO, etc.) al formato de YOLO, usa la herramienta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) de Ultralytics.
El formato del conjunto de datos de pose de YOLO se puede encontrar en detalle en la [Guía de Conjuntos de Datos](../../../datasets/pose/index.md). Para convertir tu conjunto de datos existente de otros formatos (como COCO, etc.) al formato de YOLO, usa la herramienta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) de Ultralytics.
## Validar

@ -80,7 +80,7 @@ Entrena el modelo YOLOv8n-seg en el conjunto de datos COCO128-seg durante 100 é
### Formato del conjunto de datos
El formato del conjunto de datos de segmentación YOLO puede encontrarse detallado en la [Guía de Conjuntos de Datos](../../datasets/segment/index.md). Para convertir tu conjunto de datos existente de otros formatos (como COCO, etc.) al formato YOLO, utiliza la herramienta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) de Ultralytics.
El formato del conjunto de datos de segmentación YOLO puede encontrarse detallado en la [Guía de Conjuntos de Datos](../../../datasets/segment/index.md). Para convertir tu conjunto de datos existente de otros formatos (como COCO, etc.) al formato YOLO, utiliza la herramienta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) de Ultralytics.
## Validación

@ -70,7 +70,7 @@ Entraînez le modèle YOLOv8n-cls sur le dataset MNIST160 pendant 100 époques a
### Format du dataset
Le format du dataset de classification YOLO peut être trouvé en détails dans le [Guide des Datasets](../../datasets/classify/index.md).
Le format du dataset de classification YOLO peut être trouvé en détails dans le [Guide des Datasets](../../../datasets/classify/index.md).
## Validation
@ -164,7 +164,7 @@ Les formats d'exportation disponibles pour YOLOv8-cls sont présentés dans le t
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` | ✅ | `imgsz`, `keras` |
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` | ❌ | `imgsz` |
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` | ✅ | `imgsz`, `half`, `int8` |
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` | ✅ | `imgsz` |
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` | ✅ | `imgsz` |
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` | ✅ | `imgsz` |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` | ✅ | `imgsz` |
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n-cls_ncnn_model/` | ✅ | `imgsz`, `half` |

@ -80,7 +80,7 @@ Entraînez le modèle YOLOv8n sur le jeu de données COCO128 pendant 100 époque
### Format des données
Le format des jeux de données de détection YOLO est détaillé dans le [Guide des Jeux de Données](../../datasets/detect/index.md). Pour convertir votre jeu de données existant depuis d'autres formats (comme COCO, etc.) vers le format YOLO, veuillez utiliser l'outil [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) par Ultralytics.
Le format des jeux de données de détection YOLO est détaillé dans le [Guide des Jeux de Données](../../../datasets/detect/index.md). Pour convertir votre jeu de données existant depuis d'autres formats (comme COCO, etc.) vers le format YOLO, veuillez utiliser l'outil [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) par Ultralytics.
## Validation

@ -72,7 +72,7 @@ Entraînez un modèle YOLOv8-pose sur le jeu de données COCO128-pose.
### Format du jeu de données
Le format du jeu de données YOLO pose peut être trouvé en détail dans le [Guide des jeux de données](../../datasets/pose/index.md). Pour convertir votre jeu de données existant à partir d'autres formats (comme COCO, etc.) vers le format YOLO, veuillez utiliser l'outil [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) d'Ultralytics.
Le format du jeu de données YOLO pose peut être trouvé en détail dans le [Guide des jeux de données](../../../datasets/pose/index.md). Pour convertir votre jeu de données existant à partir d'autres formats (comme COCO, etc.) vers le format YOLO, veuillez utiliser l'outil [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) d'Ultralytics.
## Val

@ -80,7 +80,7 @@ Entraînez YOLOv8n-seg sur le jeu de données COCO128-seg pendant 100 époques
### Format des données
Le format des données de segmentation YOLO peut être trouvé en détail dans le [Guide du Jeu de Données](../../datasets/segment/index.md). Pour convertir votre jeu de données existant à partir d'autres formats (comme COCO, etc.) au format YOLO, veuillez utiliser l'outil [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) par Ultralytics.
Le format des données de segmentation YOLO peut être trouvé en détail dans le [Guide du Jeu de Données](../../../datasets/segment/index.md). Pour convertir votre jeu de données existant à partir d'autres formats (comme COCO, etc.) au format YOLO, veuillez utiliser l'outil [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) par Ultralytics.
## Validation

@ -70,7 +70,7 @@ keywords: Ultralytics, YOLOv8, 画像分類, 事前トレーニングされた
### データセットフォーマット
YOLO分類データセットのフォーマットの詳細は [データセットガイド](../../datasets/classify/index.md) にあります。
YOLO分類データセットのフォーマットの詳細は [データセットガイド](../../../datasets/classify/index.md) にあります。
## 検証

@ -80,7 +80,7 @@ YOLOv8nを画像サイズ640でCOCO128データセットに対して100エポッ
### データセットの形式
YOLO検出データセットの形式の詳細は、[データセットガイド](../../datasets/detect/index.md)に記載されています。他の形式(COCO等)からYOLO形式に既存のデータセットを変換するには、Ultralyticsの[JSON2YOLO](https://github.com/ultralytics/JSON2YOLO)ツールをご利用ください。
YOLO検出データセットの形式の詳細は、[データセットガイド](../../../datasets/detect/index.md)に記載されています。他の形式(COCO等)からYOLO形式に既存のデータセットを変換するには、Ultralyticsの[JSON2YOLO](https://github.com/ultralytics/JSON2YOLO)ツールをご利用ください。
## 検証

@ -81,7 +81,7 @@ COCO128-poseデータセットでYOLOv8-poseモデルをトレーニングしま
### データセットフォーマット
YOLOポーズデータセットフォーマットの詳細は、[データセットガイド](../../datasets/pose/index.md)に記載されています。既存のデータセットを他のフォーマット(COCOなど)からYOLOフォーマットに変換するには、Ultralyticsの[JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) ツールをご使用ください。
YOLOポーズデータセットフォーマットの詳細は、[データセットガイド](../../../datasets/pose/index.md)に記載されています。既存のデータセットを他のフォーマット(COCOなど)からYOLOフォーマットに変換するには、Ultralyticsの[JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) ツールをご使用ください。
## Val

@ -80,7 +80,7 @@ COCO128-segデータセットで、画像サイズ640でYOLOv8n-segを100エポ
### データセットフォーマット
YOLOセグメンテーションデータセットのフォーマットの詳細は、[データセットガイド](../../datasets/segment/index.md)で見つけることができます。既存のデータセットを他のフォーマット(例えばCOCOなど)からYOLOフォーマットに変換するには、Ultralyticsの[JSON2YOLO](https://github.com/ultralytics/JSON2YOLO)ツールを使用してください。
YOLOセグメンテーションデータセットのフォーマットの詳細は、[データセットガイド](../../../datasets/segment/index.md)で見つけることができます。既存のデータセットを他のフォーマット(例えばCOCOなど)からYOLOフォーマットに変換するには、Ultralyticsの[JSON2YOLO](https://github.com/ultralytics/JSON2YOLO)ツールを使用してください。
## 評価

@ -70,7 +70,7 @@ YOLOv8n-cls 모델을 MNIST160 데이터셋에서 100 에포크 동안 학습시
### 데이터셋 형식
YOLO 분류 데이터셋 형식은 [데이터셋 가이드](../../datasets/classify/index.md)에서 자세히 확인할 수 있습니다.
YOLO 분류 데이터셋 형식은 [데이터셋 가이드](../../../datasets/classify/index.md)에서 자세히 확인할 수 있습니다.
## 검증

@ -80,7 +80,7 @@ COCO128 데이터셋에서 이미지 크기 640으로 YOLOv8n 모델을 100 에
### 데이터셋 형식
YOLO 감지 데이터셋 형식은 [데이터셋 가이드](../../datasets/detect/index.md)에서 자세히 볼 수 있습니다. 다른 형식(예: COCO 등)의 기존 데이터셋을 YOLO 형식으로 변환하려면 Ultralytics의 [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) 도구를 사용하십시오.
YOLO 감지 데이터셋 형식은 [데이터셋 가이드](../../../datasets/detect/index.md)에서 자세히 볼 수 있습니다. 다른 형식(예: COCO 등)의 기존 데이터셋을 YOLO 형식으로 변환하려면 Ultralytics의 [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) 도구를 사용하십시오.
## 검증

@ -81,7 +81,7 @@ COCO128-pose 데이터셋에서 YOLOv8-pose 모델 학습하기.
### 데이터셋 형식
YOLO 포즈 데이터셋 형식에 대한 자세한 내용은 [데이터셋 가이드](../../datasets/pose/index.md)에서 찾아볼 수 있습니다. 기존 데이터셋을 다른 형식(예: COCO 등)에서 YOLO 형식으로 변환하려면 Ultralytics의 [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) 도구를 사용하세요.
YOLO 포즈 데이터셋 형식에 대한 자세한 내용은 [데이터셋 가이드](../../../datasets/pose/index.md)에서 찾아볼 수 있습니다. 기존 데이터셋을 다른 형식(예: COCO 등)에서 YOLO 형식으로 변환하려면 Ultralytics의 [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) 도구를 사용하세요.
## 검증

@ -80,7 +80,7 @@ COCO128-seg 데이터셋에서 이미지 크기 640으로 YOLOv8n-seg을 100 에
### 데이터셋 형식
YOLO 세그멘테이션 데이터셋 형식은 [데이터셋 가이드](../../datasets/segment/index.md)에서 자세히 확인할 수 있습니다. 기존 데이터셋 (COCO 등)을 YOLO 형식으로 변환하려면 Ultralytics의 [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) 도구를 이용하세요.
YOLO 세그멘테이션 데이터셋 형식은 [데이터셋 가이드](../../../datasets/segment/index.md)에서 자세히 확인할 수 있습니다. 기존 데이터셋 (COCO 등)을 YOLO 형식으로 변환하려면 Ultralytics의 [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) 도구를 이용하세요.
## 검증

@ -118,6 +118,8 @@ extra:
extra_css:
- stylesheets/style.css
extra_javascript:
- javascript/extra.js
markdown_extensions:
- admonition

@ -117,9 +117,9 @@ extra:
link: https://ultralytics.com/discord
extra_css:
- 'stylesheets/style.css'
- stylesheets/style.css
extra_javascript:
- 'javascript/extra.js'
- javascript/extra.js
markdown_extensions:
- admonition
@ -165,25 +165,25 @@ nav:
- Segmentierung: tasks/segment.md
- Klassifizierung: tasks/classify.md
- Pose: tasks/pose.md
- Schnellstart: quickstart.md
- Modi:
- modes/index.md
- Training: modes/train.md
- Validierung: modes/val.md
- Vorhersage: modes/predict.md
- Exportieren: modes/export.md
- Verfolgen: modes/track.md
- Benchmarking: modes/benchmark.md
- Aufgaben:
- tasks/index.md
- Erkennung: tasks/detect.md
- Segmentierung: tasks/segment.md
- Klassifizierung: tasks/classify.md
- Pose: tasks/pose.md
- Modelle:
- models/index.md
- Datensätze:
- datasets/index.md
- Schnellstart: quickstart.md
- Modi:
- modes/index.md
- Training: modes/train.md
- Validierung: modes/val.md
- Vorhersage: modes/predict.md
- Exportieren: modes/export.md
- Verfolgen: modes/track.md
- Benchmarking: modes/benchmark.md
- Aufgaben:
- tasks/index.md
- Erkennung: tasks/detect.md
- Segmentierung: tasks/segment.md
- Klassifizierung: tasks/classify.md
- Pose: tasks/pose.md
- Modelle:
- models/index.md
- Datensätze:
- datasets/index.md
# Plugins including 301 redirects navigation ---------------------------------------------------------------------------
plugins:

@ -117,9 +117,9 @@ extra:
link: https://ultralytics.com/discord
extra_css:
- 'stylesheets/style.css'
- stylesheets/style.css
extra_javascript:
- 'javascript/extra.js'
- javascript/extra.js
markdown_extensions:
- admonition

@ -117,9 +117,9 @@ extra:
link: https://ultralytics.com/discord
extra_css:
- 'stylesheets/style.css'
- stylesheets/style.css
extra_javascript:
- 'javascript/extra.js'
- javascript/extra.js
markdown_extensions:
- admonition

@ -117,9 +117,9 @@ extra:
link: https://ultralytics.com/discord
extra_css:
- 'stylesheets/style.css'
- stylesheets/style.css
extra_javascript:
- 'javascript/extra.js'
- javascript/extra.js
markdown_extensions:
- admonition

@ -117,9 +117,9 @@ extra:
link: https://ultralytics.com/discord
extra_css:
- 'stylesheets/style.css'
- stylesheets/style.css
extra_javascript:
- 'javascript/extra.js'
- javascript/extra.js
markdown_extensions:
- admonition

@ -117,9 +117,9 @@ extra:
link: https://ultralytics.com/discord
extra_css:
- 'stylesheets/style.css'
- stylesheets/style.css
extra_javascript:
- 'javascript/extra.js'
- javascript/extra.js
markdown_extensions:
- admonition

@ -117,9 +117,9 @@ extra:
link: https://ultralytics.com/discord
extra_css:
- 'stylesheets/style.css'
- stylesheets/style.css
extra_javascript:
- 'javascript/extra.js'
- javascript/extra.js
markdown_extensions:
- admonition

@ -117,9 +117,9 @@ extra:
link: https://ultralytics.com/discord
extra_css:
- 'stylesheets/style.css'
- stylesheets/style.css
extra_javascript:
- 'javascript/extra.js'
- javascript/extra.js
markdown_extensions:
- admonition

@ -70,7 +70,7 @@ Treine o modelo YOLOv8n-cls no dataset MNIST160 por 100 épocas com tamanho de i
### Formato do dataset
O formato do dataset de classificação YOLO pode ser encontrado em detalhes no [Guia de Datasets](../../datasets/classify/index.md).
O formato do dataset de classificação YOLO pode ser encontrado em detalhes no [Guia de Datasets](../../../datasets/classify/index.md).
## Val

@ -81,7 +81,7 @@ Treine o YOLOv8n no dataset COCO128 por 100 épocas com tamanho de imagem 640. P
### Formato do Dataset
O formato do dataset de detecção do YOLO pode ser encontrado em detalhes no [Guia de Datasets](../../datasets/detect/index.md). Para converter seu dataset existente de outros formatos (como COCO, etc.) para o formato YOLO, por favor utilize a ferramenta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) da Ultralytics.
O formato do dataset de detecção do YOLO pode ser encontrado em detalhes no [Guia de Datasets](../../../datasets/detect/index.md). Para converter seu dataset existente de outros formatos (como COCO, etc.) para o formato YOLO, por favor utilize a ferramenta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) da Ultralytics.
## Validar

@ -83,7 +83,7 @@ Treine um modelo YOLOv8-pose no conjunto de dados COCO128-pose.
### Formato do conjunto de dados
O formato do conjunto de dados de pose YOLO pode ser encontrado em detalhes no [Guia de Conjuntos de Dados](../../datasets/pose/index.md). Para converter seu conjunto de dados existente de outros formatos (como COCO etc.) para o formato YOLO, por favor, use a ferramenta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) da Ultralytics.
O formato do conjunto de dados de pose YOLO pode ser encontrado em detalhes no [Guia de Conjuntos de Dados](../../../datasets/pose/index.md). Para converter seu conjunto de dados existente de outros formatos (como COCO etc.) para o formato YOLO, por favor, use a ferramenta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) da Ultralytics.
## Validar

@ -80,7 +80,7 @@ Treine o modelo YOLOv8n-seg no conjunto de dados COCO128-seg por 100 épocas com
### Formato do conjunto de dados
O formato do conjunto de dados de segmentação YOLO pode ser encontrado em detalhes no [Guia de Conjuntos de Dados](../../datasets/segment/index.md). Para converter seu conjunto de dados existente de outros formatos (como COCO etc.) para o formato YOLO, utilize a ferramenta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) da Ultralytics.
O formato do conjunto de dados de segmentação YOLO pode ser encontrado em detalhes no [Guia de Conjuntos de Dados](../../../datasets/segment/index.md). Para converter seu conjunto de dados existente de outros formatos (como COCO etc.) para o formato YOLO, utilize a ferramenta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) da Ultralytics.
## Val

@ -70,7 +70,7 @@ keywords: Ultralytics, YOLOv8, классификация изображений
### Формат набора данных
Формат набора данных для классификации YOLO можно подробно изучить в [Руководстве по наборам данных](../../datasets/classify/index.md).
Формат набора данных для классификации YOLO можно подробно изучить в [Руководстве по наборам данных](../../../datasets/classify/index.md).
## Валидация

@ -80,7 +80,7 @@ keywords: YOLOv8, Ultralytics, обнаружение объектов, пред
### Формат датасета
Формат датасета для обнаружения YOLO можно найти более подробно в [Руководстве по датасетам](../../datasets/detect/index.md). Чтобы конвертировать ваш существующий датасет из других форматов (например, COCO и т.д.) в формат YOLO, пожалуйста, используйте инструмент [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) от Ultralytics.
Формат датасета для обнаружения YOLO можно найти более подробно в [Руководстве по датасетам](../../../datasets/detect/index.md). Чтобы конвертировать ваш существующий датасет из других форматов (например, COCO и т.д.) в формат YOLO, пожалуйста, используйте инструмент [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) от Ultralytics.
## Валидация

@ -71,7 +71,7 @@ description: Узнайте, как использовать Ultralytics YOLOv8
### Формат набора данных
Формат набора данных YOLO pose можно найти в подробностях в [Руководстве по наборам данных](../../datasets/pose/index.md). Для преобразования существующего набора данных из других форматов (например, COCO и т.д.) в формат YOLO, пожалуйста, используйте инструмент [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) от Ultralytics.
Формат набора данных YOLO pose можно найти в подробностях в [Руководстве по наборам данных](../../../datasets/pose/index.md). Для преобразования существующего набора данных из других форматов (например, COCO и т.д.) в формат YOLO, пожалуйста, используйте инструмент [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) от Ultralytics.
## Проверка

@ -81,7 +81,7 @@ keywords: yolov8, сегментация объектов, Ultralytics, набо
### Формат набора данных
Формат набора данных для сегментации YOLO можно найти детально в [Руководстве по наборам данных](../../datasets/segment/index.md). Чтобы конвертировать свой существующий набор данных из других форматов (например, COCO и т.д.) в формат YOLO, пожалуйста, используйте инструмент [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) от Ultralytics.
Формат набора данных для сегментации YOLO можно найти детально в [Руководстве по наборам данных](../../../datasets/segment/index.md). Чтобы конвертировать свой существующий набор данных из других форматов (например, COCO и т.д.) в формат YOLO, пожалуйста, используйте инструмент [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) от Ultralytics.
## Валидация

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.208'
__version__ = '8.0.209'
from ultralytics.models import RTDETR, SAM, YOLO
from ultralytics.models.fastsam import FastSAM

@ -77,7 +77,7 @@ class BaseValidator:
self.args = get_cfg(overrides=args)
self.dataloader = dataloader
self.pbar = pbar
self.model = None
self.stride = None
self.data = None
self.device = None
self.batch_i = None
@ -146,6 +146,7 @@ class BaseValidator:
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
if not pt:
self.args.rect = False
self.stride = model.stride # used in get_dataloader() for padding
self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch)
model.eval()

@ -12,7 +12,6 @@ from ultralytics.utils import LOGGER, ops
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
from ultralytics.utils.plotting import output_to_target, plot_images
from ultralytics.utils.torch_utils import de_parallel
class DetectionValidator(BaseValidator):
@ -191,8 +190,7 @@ class DetectionValidator(BaseValidator):
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
"""
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=gs)
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=self.stride)
def get_dataloader(self, dataset_path, batch_size):
"""Construct and return dataloader."""

Loading…
Cancel
Save