exp-e2e
Laughing-q 8 months ago
parent d5b7d37d24
commit 99686abcf3
  1. 46
      ultralytics/cfg/models/exp/yolov8-c3f2-2222-0.25-True.yaml
  2. 46
      ultralytics/cfg/models/exp/yolov8-c3f2-2222-True.yaml
  3. 2
      ultralytics/nn/modules/__init__.py
  4. 22
      ultralytics/nn/modules/block.py
  5. 4
      ultralytics/nn/tasks.py

@ -0,0 +1,46 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3f2, [256, True, 1, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3f2, [512, True, 1, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3f2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3f2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3f2, [512, True]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3f2, [256, True]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 2, C3f2, [512, True]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 2, C3f2, [1024, True]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

@ -0,0 +1,46 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3f2, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3f2, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3f2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3f2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3f2, [512, True]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3f2, [256, True]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 2, C3f2, [512, True]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 2, C3f2, [1024, True]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

@ -47,6 +47,7 @@ from .block import (
ResNetLayer,
Silence,
C2f2,
C3f2,
C2k2,
C3k2,
C3K2,
@ -112,6 +113,7 @@ __all__ = (
"C3",
"C2f",
"C2f2",
"C3f2",
"C2k2",
"C3k2",
"C3K2",

@ -38,6 +38,7 @@ __all__ = (
"CBLinear",
"Silence",
"C2f2",
"C3f2",
"C2k2",
"C3k2",
"C3K2",
@ -271,6 +272,27 @@ class C2f2(nn.Module):
return self.cv2(torch.cat(y, 1))
class C3f2(nn.Module):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv((2 + n) * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(C3k(c_, c_, 2, shortcut, g) for _ in range(n))
def forward(self, x):
"""Forward pass through C2f layer."""
y = [self.cv2(x), self.cv1(x)]
y.extend(m(y[-1]) for m in self.m)
return self.cv3(torch.cat(y, 1))
class C2k2(C2f2):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""

@ -22,6 +22,7 @@ from ultralytics.nn.modules import (
BottleneckCSP,
C2f,
C2f2,
C3f2,
C2k2,
C3k2,
C3s2,
@ -883,6 +884,7 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
C2,
C2f,
C2f2,
C3f2,
C2k2,
C3k2,
C3n2,
@ -912,7 +914,7 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
) # num heads
args = [c1, c2, *args[1:]]
if m in (BottleneckCSP, C1, C2, C2f, C2f2, C2k2, C3s2, C3n2, C3k2, C3K2, C3m1, C3k3, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3):
if m in (BottleneckCSP, C1, C2, C2f, C3f2, C2k2, C3s2, C3n2, C3k2, C3K2, C3m1, C3k3, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3):
args.insert(2, n) # number of repeats
n = 1
elif m is AIFI:

Loading…
Cancel
Save