|
|
|
@ -90,8 +90,10 @@ def on_train_epoch_end(trainer): |
|
|
|
|
if trainer.epoch == 1: |
|
|
|
|
_log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic') |
|
|
|
|
# Report the current training progress |
|
|
|
|
for k, v in trainer.validator.metrics.results_dict.items(): |
|
|
|
|
for k, v in trainer.label_loss_items(trainer.tloss, prefix='train').items(): |
|
|
|
|
task.get_logger().report_scalar('train', k, v, iteration=trainer.epoch) |
|
|
|
|
for k, v in trainer.lr.items(): |
|
|
|
|
task.get_logger().report_scalar('lr', k, v, iteration=trainer.epoch) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def on_fit_epoch_end(trainer): |
|
|
|
@ -102,6 +104,8 @@ def on_fit_epoch_end(trainer): |
|
|
|
|
series='Epoch Time', |
|
|
|
|
value=trainer.epoch_time, |
|
|
|
|
iteration=trainer.epoch) |
|
|
|
|
for k, v in trainer.metrics.items(): |
|
|
|
|
task.get_logger().report_scalar('val', k, v, iteration=trainer.epoch) |
|
|
|
|
if trainer.epoch == 0: |
|
|
|
|
from ultralytics.utils.torch_utils import model_info_for_loggers |
|
|
|
|
for k, v in model_info_for_loggers(trainer).items(): |
|
|
|
|