Fix inaccuracies in OBB docs (#16253)

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/16264/head
Mohammed Yasin 5 months ago committed by GitHub
parent cc5643e81c
commit 9307df7974
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 12
      docs/en/datasets/obb/dota-v2.md
  2. 12
      docs/en/datasets/obb/index.md

@ -111,15 +111,15 @@ To train a model on the DOTA v1 dataset, you can utilize the following code snip
# Create a new YOLOv8n-OBB model from scratch
model = YOLO("yolov8n-obb.yaml")
# Train the model on the DOTAv2 dataset
results = model.train(data="DOTAv1.yaml", epochs=100, imgsz=640)
# Train the model on the DOTAv1 dataset
results = model.train(data="DOTAv1.yaml", epochs=100, imgsz=1024)
```
=== "CLI"
```bash
# Train a new YOLOv8n-OBB model on the DOTAv2 dataset
yolo obb train data=DOTAv1.yaml model=yolov8n-obb.pt epochs=100 imgsz=640
# Train a new YOLOv8n-OBB model on the DOTAv1 dataset
yolo obb train data=DOTAv1.yaml model=yolov8n-obb.pt epochs=100 imgsz=1024
```
## Sample Data and Annotations
@ -180,14 +180,14 @@ To train a model on the DOTA dataset, you can use the following example with Ult
model = YOLO("yolov8n-obb.yaml")
# Train the model on the DOTAv1 dataset
results = model.train(data="DOTAv1.yaml", epochs=100, imgsz=640)
results = model.train(data="DOTAv1.yaml", epochs=100, imgsz=1024)
```
=== "CLI"
```bash
# Train a new YOLOv8n-OBB model on the DOTAv1 dataset
yolo obb train data=DOTAv1.yaml model=yolov8n-obb.pt epochs=100 imgsz=640
yolo obb train data=DOTAv1.yaml model=yolov8n-obb.pt epochs=100 imgsz=1024
```
For more details on how to split and preprocess the DOTA images, refer to the [split DOTA images section](#split-dota-images).

@ -42,21 +42,23 @@ To train a model using these OBB formats:
# Create a new YOLOv8n-OBB model from scratch
model = YOLO("yolov8n-obb.yaml")
# Train the model on the DOTAv2 dataset
results = model.train(data="DOTAv1.yaml", epochs=100, imgsz=640)
# Train the model on the DOTAv1 dataset
results = model.train(data="DOTAv1.yaml", epochs=100, imgsz=1024)
```
=== "CLI"
```bash
# Train a new YOLOv8n-OBB model on the DOTAv2 dataset
yolo obb train data=DOTAv1.yaml model=yolov8n-obb.pt epochs=100 imgsz=640
# Train a new YOLOv8n-OBB model on the DOTAv1 dataset
yolo obb train data=DOTAv1.yaml model=yolov8n-obb.pt epochs=100 imgsz=1024
```
## Supported Datasets
Currently, the following datasets with Oriented Bounding Boxes are supported:
- [DOTA-v1](dota-v2.md): The first version of the DOTA dataset, providing a comprehensive set of aerial images with oriented bounding boxes for object detection.
- [DOTA-v1.5](dota-v2.md): An intermediate version of the DOTA dataset, offering additional annotations and improvements over DOTA-v1 for enhanced object detection tasks.
- [DOTA-v2](dota-v2.md): DOTA (A Large-scale Dataset for Object Detection in Aerial Images) version 2, emphasizes detection from aerial perspectives and contains oriented bounding boxes with 1.7 million instances and 11,268 images.
- [DOTA8](dota8.md): A small, 8-image subset of the full DOTA dataset suitable for testing workflows and Continuous Integration (CI) checks of OBB training in the `ultralytics` repository.
@ -133,6 +135,8 @@ This ensures your model leverages the detailed OBB annotations for improved dete
Currently, Ultralytics supports the following datasets for OBB training:
- [DOTA-v1](dota-v2.md): The first version of the DOTA dataset, providing a comprehensive set of aerial images with oriented bounding boxes for object detection.
- [DOTA-v1.5](dota-v2.md): An intermediate version of the DOTA dataset, offering additional annotations and improvements over DOTA-v1 for enhanced object detection tasks.
- [DOTA-v2](dota-v2.md): This dataset includes 1.7 million instances with oriented bounding boxes and 11,268 images, primarily focusing on aerial object detection.
- [DOTA8](dota8.md): A smaller, 8-image subset of the DOTA dataset used for testing and continuous integration (CI) checks.

Loading…
Cancel
Save