Currently, the following datasets with Oriented Bounding Boxes are supported:
- [DOTA-v1](dota-v2.md): The first version of the DOTA dataset, providing a comprehensive set of aerial images with oriented bounding boxes for object detection.
- [DOTA-v1.5](dota-v2.md): An intermediate version of the DOTA dataset, offering additional annotations and improvements over DOTA-v1 for enhanced object detection tasks.
- [DOTA-v2](dota-v2.md): DOTA (A Large-scale Dataset for Object Detection in Aerial Images) version 2, emphasizes detection from aerial perspectives and contains oriented bounding boxes with 1.7 million instances and 11,268 images.
- [DOTA8](dota8.md): A small, 8-image subset of the full DOTA dataset suitable for testing workflows and Continuous Integration (CI) checks of OBB training in the `ultralytics` repository.
@ -133,6 +135,8 @@ This ensures your model leverages the detailed OBB annotations for improved dete
Currently, Ultralytics supports the following datasets for OBB training:
- [DOTA-v1](dota-v2.md): The first version of the DOTA dataset, providing a comprehensive set of aerial images with oriented bounding boxes for object detection.
- [DOTA-v1.5](dota-v2.md): An intermediate version of the DOTA dataset, offering additional annotations and improvements over DOTA-v1 for enhanced object detection tasks.
- [DOTA-v2](dota-v2.md): This dataset includes 1.7 million instances with oriented bounding boxes and 11,268 images, primarily focusing on aerial object detection.
- [DOTA8](dota8.md): A smaller, 8-image subset of the DOTA dataset used for testing and continuous integration (CI) checks.