Merge branch 'main' into cli-info

pull/16648/head^2
Ultralytics Assistant 4 months ago committed by GitHub
commit 908cf0ddba
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 2
      docs/en/datasets/detect/coco.md
  2. 8
      docs/en/datasets/segment/coco.md
  3. 2
      docs/en/models/mobile-sam.md
  4. 2
      docs/en/models/sam-2.md
  5. 2
      pyproject.toml
  6. 2
      ultralytics/__init__.py

@ -157,6 +157,8 @@ Pretrained YOLO11 models on the COCO dataset can be downloaded from the links pr
- [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt)
- [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt)
- [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt)
- [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt)
- [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt)
These models vary in size, mAP, and inference speed, providing options for different performance and resource requirements.

@ -141,13 +141,7 @@ The COCO-Seg dataset includes several key features:
The COCO-Seg dataset supports multiple pretrained YOLO11 segmentation models with varying performance metrics. Here's a summary of the available models and their key metrics:
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
{% include "macros/yolo-seg-perf.md" %}
### How is the COCO-Seg dataset structured and what subsets does it contain?

@ -4,7 +4,7 @@ description: Discover MobileSAM, a lightweight and fast image segmentation model
keywords: MobileSAM, image segmentation, lightweight model, fast segmentation, mobile applications, SAM, ViT encoder, Tiny-ViT, Ultralytics
---
![MobileSAM Logo](https://github.com/ChaoningZhang/MobileSAM/blob/master/assets/logo2.png)
![MobileSAM Logo](https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/assets/logo2.png)
# Mobile Segment Anything (MobileSAM)

@ -65,7 +65,7 @@ SAM 2 sets a new benchmark in the field, outperforming previous models on variou
- **Memory Mechanism**: Includes a memory encoder, memory bank, and memory attention module. These components collectively store and utilize information from past frames, enabling the model to maintain consistent object tracking over time.
- **Mask Decoder**: Generates the final segmentation masks based on the encoded image features and prompts. In video, it also uses memory context to ensure accurate tracking across frames.
![SAM 2 Architecture Diagram](https://github.com/facebookresearch/segment-anything-2/blob/main/assets/model_diagram.png)
![SAM 2 Architecture Diagram](https://raw.githubusercontent.com/facebookresearch/sam2/refs/heads/main/assets/model_diagram.png)
### Memory Mechanism and Occlusion Handling

@ -62,7 +62,7 @@ classifiers = [
# Required dependencies ------------------------------------------------------------------------------------------------
dependencies = [
"numpy>=1.23.0,<2.0.0", # temporary patch for compat errors https://github.com/ultralytics/yolov5/actions/runs/9538130424/job/26286956354
"numpy>=1.23.0", # temporary patch for compat errors https://github.com/ultralytics/yolov5/actions/runs/9538130424/job/26286956354
"matplotlib>=3.3.0",
"opencv-python>=4.6.0",
"pillow>=7.1.2",

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.3.3"
__version__ = "8.3.4"
import os

Loading…
Cancel
Save