|
|
|
@ -12,10 +12,10 @@ keywords: Ultralytics, YOLOv8, Object Detection, Object Tracking, IDetection, Vi |
|
|
|
|
|
|
|
|
|
## Samples |
|
|
|
|
|
|
|
|
|
| VisionEye View | VisionEye View With Object Tracking | |
|
|
|
|
|:------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
|
|
|
|  |  | |
|
|
|
|
| VisionEye View Object Mapping using Ultralytics YOLOv8 | VisionEye View Object Mapping with Object Tracking using Ultralytics YOLOv8 | |
|
|
|
|
| VisionEye View | VisionEye View With Object Tracking | VisionEye View With Distance Calculation | |
|
|
|
|
|:------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
|
|
|
|  |  |  | |
|
|
|
|
| VisionEye View Object Mapping using Ultralytics YOLOv8 | VisionEye View Object Mapping with Object Tracking using Ultralytics YOLOv8 | VisionEye View with Distance Calculation using Ultralytics YOLOv8 | |
|
|
|
|
|
|
|
|
|
!!! Example "VisionEye Object Mapping using YOLOv8" |
|
|
|
|
|
|
|
|
@ -105,6 +105,63 @@ keywords: Ultralytics, YOLOv8, Object Detection, Object Tracking, IDetection, Vi |
|
|
|
|
cap.release() |
|
|
|
|
cv2.destroyAllWindows() |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
=== "VisionEye with Distance Calculation" |
|
|
|
|
|
|
|
|
|
```python |
|
|
|
|
import cv2 |
|
|
|
|
import math |
|
|
|
|
from ultralytics import YOLO |
|
|
|
|
from ultralytics.utils.plotting import Annotator, colors |
|
|
|
|
|
|
|
|
|
model = YOLO("yolov8s.pt") |
|
|
|
|
cap = cv2.VideoCapture("Path/to/video/file.mp4") |
|
|
|
|
|
|
|
|
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) |
|
|
|
|
|
|
|
|
|
out = cv2.VideoWriter('visioneye-distance-calculation.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h)) |
|
|
|
|
|
|
|
|
|
center_point = (0, h) |
|
|
|
|
pixel_per_meter = 10 |
|
|
|
|
|
|
|
|
|
txt_color, txt_background, bbox_clr = ((0, 0, 0), (255, 255, 255), (255, 0, 255)) |
|
|
|
|
|
|
|
|
|
while True: |
|
|
|
|
ret, im0 = cap.read() |
|
|
|
|
if not ret: |
|
|
|
|
print("Video frame is empty or video processing has been successfully completed.") |
|
|
|
|
break |
|
|
|
|
|
|
|
|
|
annotator = Annotator(im0, line_width=2) |
|
|
|
|
|
|
|
|
|
results = model.track(im0, persist=True) |
|
|
|
|
boxes = results[0].boxes.xyxy.cpu() |
|
|
|
|
|
|
|
|
|
if results[0].boxes.id is not None: |
|
|
|
|
track_ids = results[0].boxes.id.int().cpu().tolist() |
|
|
|
|
|
|
|
|
|
for box, track_id in zip(boxes, track_ids): |
|
|
|
|
annotator.box_label(box, label=str(track_id), color=bbox_clr) |
|
|
|
|
annotator.visioneye(box, center_point) |
|
|
|
|
|
|
|
|
|
x1, y1 = int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2) # Bounding box centroid |
|
|
|
|
|
|
|
|
|
distance = (math.sqrt((x1 - center_point[0]) ** 2 + (y1 - center_point[1]) ** 2))/pixel_per_meter |
|
|
|
|
|
|
|
|
|
text_size, _ = cv2.getTextSize(f"Distance: {distance:.2f} m", cv2.FONT_HERSHEY_SIMPLEX,1.2, 3) |
|
|
|
|
cv2.rectangle(im0, (x1, y1 - text_size[1] - 10),(x1 + text_size[0] + 10, y1), txt_background, -1) |
|
|
|
|
cv2.putText(im0, f"Distance: {distance:.2f} m",(x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 1.2,txt_color, 3) |
|
|
|
|
|
|
|
|
|
out.write(im0) |
|
|
|
|
cv2.imshow("visioneye-distance-calculation", im0) |
|
|
|
|
|
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'): |
|
|
|
|
break |
|
|
|
|
|
|
|
|
|
out.release() |
|
|
|
|
cap.release() |
|
|
|
|
cv2.destroyAllWindows() |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
### `visioneye` Arguments |
|
|
|
|
|
|
|
|
|