|
|
|
@ -29,6 +29,35 @@ keywords: Open Images V7, Google dataset, computer vision, YOLO11 models, object |
|
|
|
|
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 | |
|
|
|
|
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 | |
|
|
|
|
|
|
|
|
|
You can use these pretrained for inference or fine-tuning as follows. |
|
|
|
|
|
|
|
|
|
!!! example "Pretrained Model Usage Example" |
|
|
|
|
|
|
|
|
|
=== "Python" |
|
|
|
|
|
|
|
|
|
```python |
|
|
|
|
from ultralytics import YOLO |
|
|
|
|
|
|
|
|
|
# Load an Open Images Dataset V7 pretrained YOLOv8n model |
|
|
|
|
model = YOLO("yolov8n-oiv7.pt") |
|
|
|
|
|
|
|
|
|
# Run prediction |
|
|
|
|
results = model.predict(source="image.jpg") |
|
|
|
|
|
|
|
|
|
# Start training from the pretrained checkpoint |
|
|
|
|
results = model.train(data="coco8.yaml", epochs=100, imgsz=640) |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
=== "CLI" |
|
|
|
|
|
|
|
|
|
```bash |
|
|
|
|
# Predict using an Open Images Dataset V7 pretrained model |
|
|
|
|
yolo detect predict source=image.jpg model=yolov8n-oiv7.pt |
|
|
|
|
|
|
|
|
|
# Start training from an Open Images Dataset V7 pretrained checkpoint |
|
|
|
|
yolo detect train data=coco8.yaml model=yolov8n-oiv7.pt epochs=100 imgsz=640 |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
![Open Images V7 classes visual](https://github.com/ultralytics/docs/releases/download/0/open-images-v7-classes-visual.avif) |
|
|
|
|
|
|
|
|
|
## Key Features |
|
|
|
|