|
|
|
@ -4,55 +4,21 @@ import math |
|
|
|
|
|
|
|
|
|
import cv2 |
|
|
|
|
|
|
|
|
|
from ultralytics.utils.checks import check_imshow |
|
|
|
|
from ultralytics.solutions.solutions import BaseSolution # Import a parent class |
|
|
|
|
from ultralytics.utils.plotting import Annotator, colors |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DistanceCalculation: |
|
|
|
|
class DistanceCalculation(BaseSolution): |
|
|
|
|
"""A class to calculate distance between two objects in a real-time video stream based on their tracks.""" |
|
|
|
|
|
|
|
|
|
def __init__( |
|
|
|
|
self, |
|
|
|
|
names, |
|
|
|
|
view_img=False, |
|
|
|
|
line_thickness=2, |
|
|
|
|
line_color=(255, 0, 255), |
|
|
|
|
centroid_color=(104, 31, 17), |
|
|
|
|
): |
|
|
|
|
""" |
|
|
|
|
Initializes the DistanceCalculation class with the given parameters. |
|
|
|
|
|
|
|
|
|
Args: |
|
|
|
|
names (dict): Dictionary of classes names. |
|
|
|
|
view_img (bool, optional): Flag to indicate if the video stream should be displayed. Defaults to False. |
|
|
|
|
line_thickness (int, optional): Thickness of the lines drawn on the image. Defaults to 2. |
|
|
|
|
line_color (tuple, optional): Color of the lines drawn on the image (BGR format). Defaults to (255, 255, 0). |
|
|
|
|
centroid_color (tuple, optional): Color of the centroids drawn (BGR format). Defaults to (255, 0, 255). |
|
|
|
|
""" |
|
|
|
|
# Visual & image information |
|
|
|
|
self.im0 = None |
|
|
|
|
self.annotator = None |
|
|
|
|
self.view_img = view_img |
|
|
|
|
self.line_color = line_color |
|
|
|
|
self.centroid_color = centroid_color |
|
|
|
|
|
|
|
|
|
# Prediction & tracking information |
|
|
|
|
self.names = names |
|
|
|
|
self.boxes = None |
|
|
|
|
self.line_thickness = line_thickness |
|
|
|
|
self.trk_ids = None |
|
|
|
|
|
|
|
|
|
# Distance calculation information |
|
|
|
|
self.centroids = [] |
|
|
|
|
def __init__(self, **kwargs): |
|
|
|
|
"""Initializes the DistanceCalculation class with the given parameters.""" |
|
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
|
|
|
|
# Mouse event information |
|
|
|
|
self.left_mouse_count = 0 |
|
|
|
|
self.selected_boxes = {} |
|
|
|
|
|
|
|
|
|
# Check if environment supports imshow |
|
|
|
|
self.env_check = check_imshow(warn=True) |
|
|
|
|
self.window_name = "Ultralytics Solutions" |
|
|
|
|
|
|
|
|
|
def mouse_event_for_distance(self, event, x, y, flags, param): |
|
|
|
|
""" |
|
|
|
|
Handles mouse events to select regions in a real-time video stream. |
|
|
|
@ -67,7 +33,7 @@ class DistanceCalculation: |
|
|
|
|
if event == cv2.EVENT_LBUTTONDOWN: |
|
|
|
|
self.left_mouse_count += 1 |
|
|
|
|
if self.left_mouse_count <= 2: |
|
|
|
|
for box, track_id in zip(self.boxes, self.trk_ids): |
|
|
|
|
for box, track_id in zip(self.boxes, self.track_ids): |
|
|
|
|
if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes: |
|
|
|
|
self.selected_boxes[track_id] = box |
|
|
|
|
|
|
|
|
@ -75,30 +41,21 @@ class DistanceCalculation: |
|
|
|
|
self.selected_boxes = {} |
|
|
|
|
self.left_mouse_count = 0 |
|
|
|
|
|
|
|
|
|
def start_process(self, im0, tracks): |
|
|
|
|
def calculate(self, im0): |
|
|
|
|
""" |
|
|
|
|
Processes the video frame and calculates the distance between two bounding boxes. |
|
|
|
|
|
|
|
|
|
Args: |
|
|
|
|
im0 (ndarray): The image frame. |
|
|
|
|
tracks (list): List of tracks obtained from the object tracking process. |
|
|
|
|
|
|
|
|
|
Returns: |
|
|
|
|
(ndarray): The processed image frame. |
|
|
|
|
""" |
|
|
|
|
self.im0 = im0 |
|
|
|
|
if tracks[0].boxes.id is None: |
|
|
|
|
if self.view_img: |
|
|
|
|
self.display_frames() |
|
|
|
|
return im0 |
|
|
|
|
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator |
|
|
|
|
self.extract_tracks(im0) # Extract tracks |
|
|
|
|
|
|
|
|
|
self.boxes = tracks[0].boxes.xyxy.cpu() |
|
|
|
|
clss = tracks[0].boxes.cls.cpu().tolist() |
|
|
|
|
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist() |
|
|
|
|
|
|
|
|
|
self.annotator = Annotator(self.im0, line_width=self.line_thickness) |
|
|
|
|
|
|
|
|
|
for box, cls, track_id in zip(self.boxes, clss, self.trk_ids): |
|
|
|
|
# Iterate over bounding boxes, track ids and classes index |
|
|
|
|
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss): |
|
|
|
|
self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)]) |
|
|
|
|
|
|
|
|
|
if len(self.selected_boxes) == 2: |
|
|
|
@ -115,25 +72,11 @@ class DistanceCalculation: |
|
|
|
|
pixels_distance = math.sqrt( |
|
|
|
|
(self.centroids[0][0] - self.centroids[1][0]) ** 2 + (self.centroids[0][1] - self.centroids[1][1]) ** 2 |
|
|
|
|
) |
|
|
|
|
self.annotator.plot_distance_and_line(pixels_distance, self.centroids, self.line_color, self.centroid_color) |
|
|
|
|
self.annotator.plot_distance_and_line(pixels_distance, self.centroids) |
|
|
|
|
|
|
|
|
|
self.centroids = [] |
|
|
|
|
|
|
|
|
|
if self.view_img and self.env_check: |
|
|
|
|
self.display_frames() |
|
|
|
|
|
|
|
|
|
return im0 |
|
|
|
|
|
|
|
|
|
def display_frames(self): |
|
|
|
|
"""Displays the current frame with annotations.""" |
|
|
|
|
cv2.namedWindow(self.window_name) |
|
|
|
|
cv2.setMouseCallback(self.window_name, self.mouse_event_for_distance) |
|
|
|
|
cv2.imshow(self.window_name, self.im0) |
|
|
|
|
|
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord("q"): |
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
self.display_output(im0) # display output with base class function |
|
|
|
|
cv2.setMouseCallback("Ultralytics Solutions", self.mouse_event_for_distance) |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
names = {0: "person", 1: "car"} # example class names |
|
|
|
|
distance_calculation = DistanceCalculation(names) |
|
|
|
|
return im0 # return output image for more usage |
|
|
|
|