`ultralytics 8.3.16` PyTorch 2.5.0 support (#16998)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: RizwanMunawar <chr043416@gmail.com>
Co-authored-by: Muhammad Rizwan Munawar <muhammadrizwanmunawar123@gmail.com>
pull/16641/head v8.3.16
Glenn Jocher 1 month ago committed by GitHub
parent ef28f1078c
commit 8d7d1fe390
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 3
      docs/mkdocs_github_authors.yaml
  2. 1
      mkdocs.yml
  3. 2
      pyproject.toml
  4. 36
      tests/test_solutions.py
  5. 2
      ultralytics/__init__.py
  6. 6
      ultralytics/data/split_dota.py
  7. 52
      ultralytics/solutions/ai_gym.py
  8. 77
      ultralytics/solutions/analytics.py
  9. 60
      ultralytics/solutions/distance_calculation.py
  10. 64
      ultralytics/solutions/heatmap.py
  11. 104
      ultralytics/solutions/object_counter.py
  12. 90
      ultralytics/solutions/parking_management.py
  13. 67
      ultralytics/solutions/queue_management.py
  14. 95
      ultralytics/solutions/solutions.py
  15. 48
      ultralytics/solutions/speed_estimation.py
  16. 5
      ultralytics/solutions/streamlit_inference.py

@ -76,6 +76,9 @@
79740115+0xSynapse@users.noreply.github.com:
avatar: https://avatars.githubusercontent.com/u/79740115?v=4
username: 0xSynapse
91465467+lalayants@users.noreply.github.com:
avatar: https://avatars.githubusercontent.com/u/91465467?v=4
username: lalayants
Francesco.mttl@gmail.com:
avatar: https://avatars.githubusercontent.com/u/3855193?v=4
username: ambitious-octopus

@ -555,6 +555,7 @@ nav:
- utils: reference/nn/modules/utils.md
- tasks: reference/nn/tasks.md
- solutions:
- solutions: reference/solutions/solutions.md
- ai_gym: reference/solutions/ai_gym.md
- analytics: reference/solutions/analytics.md
- distance_calculation: reference/solutions/distance_calculation.md

@ -26,7 +26,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "ultralytics"
dynamic = ["version"]
description = "Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification."
description = "Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification."
readme = "README.md"
requires-python = ">=3.8"
license = { "text" = "AGPL-3.0" }

@ -17,10 +17,15 @@ def test_major_solutions():
cap = cv2.VideoCapture("solutions_ci_demo.mp4")
assert cap.isOpened(), "Error reading video file"
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
counter = solutions.ObjectCounter(region=region_points, model="yolo11n.pt", show=False)
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, model="yolo11n.pt", show=False)
speed = solutions.SpeedEstimator(region=region_points, model="yolo11n.pt", show=False)
queue = solutions.QueueManager(region=region_points, model="yolo11n.pt", show=False)
counter = solutions.ObjectCounter(region=region_points, model="yolo11n.pt", show=False) # Test object counter
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, model="yolo11n.pt", show=False) # Test heatmaps
speed = solutions.SpeedEstimator(region=region_points, model="yolo11n.pt", show=False) # Test queue manager
queue = solutions.QueueManager(region=region_points, model="yolo11n.pt", show=False) # Test speed estimation
line_analytics = solutions.Analytics(analytics_type="line", model="yolo11n.pt", show=False) # line analytics
pie_analytics = solutions.Analytics(analytics_type="pie", model="yolo11n.pt", show=False) # line analytics
bar_analytics = solutions.Analytics(analytics_type="bar", model="yolo11n.pt", show=False) # line analytics
area_analytics = solutions.Analytics(analytics_type="area", model="yolo11n.pt", show=False) # line analytics
frame_count = 0 # Required for analytics
while cap.isOpened():
success, im0 = cap.read()
if not success:
@ -30,24 +35,23 @@ def test_major_solutions():
_ = heatmap.generate_heatmap(original_im0.copy())
_ = speed.estimate_speed(original_im0.copy())
_ = queue.process_queue(original_im0.copy())
_ = line_analytics.process_data(original_im0.copy(), frame_count)
_ = pie_analytics.process_data(original_im0.copy(), frame_count)
_ = bar_analytics.process_data(original_im0.copy(), frame_count)
_ = area_analytics.process_data(original_im0.copy(), frame_count)
cap.release()
cv2.destroyAllWindows()
@pytest.mark.slow
def test_aigym():
"""Test the workouts monitoring solution."""
# Test workouts monitoring
safe_download(url=WORKOUTS_SOLUTION_DEMO)
cap = cv2.VideoCapture("solution_ci_pose_demo.mp4")
assert cap.isOpened(), "Error reading video file"
gym = solutions.AIGym(line_width=2, kpts=[5, 11, 13])
while cap.isOpened():
success, im0 = cap.read()
cap1 = cv2.VideoCapture("solution_ci_pose_demo.mp4")
assert cap1.isOpened(), "Error reading video file"
gym = solutions.AIGym(line_width=2, kpts=[5, 11, 13], show=False)
while cap1.isOpened():
success, im0 = cap1.read()
if not success:
break
_ = gym.monitor(im0)
cap.release()
cv2.destroyAllWindows()
cap1.release()
@pytest.mark.slow

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.3.15"
__version__ = "8.3.16"
import os

@ -13,9 +13,6 @@ from tqdm import tqdm
from ultralytics.data.utils import exif_size, img2label_paths
from ultralytics.utils.checks import check_requirements
check_requirements("shapely")
from shapely.geometry import Polygon
def bbox_iof(polygon1, bbox2, eps=1e-6):
"""
@ -33,6 +30,9 @@ def bbox_iof(polygon1, bbox2, eps=1e-6):
Polygon format: [x1, y1, x2, y2, x3, y3, x4, y4].
Bounding box format: [x_min, y_min, x_max, y_max].
"""
check_requirements("shapely")
from shapely.geometry import Polygon
polygon1 = polygon1.reshape(-1, 4, 2)
lt_point = np.min(polygon1, axis=-2) # left-top
rb_point = np.max(polygon1, axis=-2) # right-bottom

@ -1,16 +1,40 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
from ultralytics.solutions.solutions import BaseSolution
from ultralytics.utils.plotting import Annotator
class AIGym(BaseSolution):
"""A class to manage the gym steps of people in a real-time video stream based on their poses."""
"""
A class to manage gym steps of people in a real-time video stream based on their poses.
def __init__(self, **kwargs):
"""Initialization function for AiGYM class, a child class of BaseSolution class, can be used for workouts
monitoring.
This class extends BaseSolution to monitor workouts using YOLO pose estimation models. It tracks and counts
repetitions of exercises based on predefined angle thresholds for up and down positions.
Attributes:
count (List[int]): Repetition counts for each detected person.
angle (List[float]): Current angle of the tracked body part for each person.
stage (List[str]): Current exercise stage ('up', 'down', or '-') for each person.
initial_stage (str | None): Initial stage of the exercise.
up_angle (float): Angle threshold for considering the 'up' position of an exercise.
down_angle (float): Angle threshold for considering the 'down' position of an exercise.
kpts (List[int]): Indices of keypoints used for angle calculation.
lw (int): Line width for drawing annotations.
annotator (Annotator): Object for drawing annotations on the image.
Methods:
monitor: Processes a frame to detect poses, calculate angles, and count repetitions.
Examples:
>>> gym = AIGym(model="yolov8n-pose.pt")
>>> image = cv2.imread("gym_scene.jpg")
>>> processed_image = gym.monitor(image)
>>> cv2.imshow("Processed Image", processed_image)
>>> cv2.waitKey(0)
"""
def __init__(self, **kwargs):
"""Initializes AIGym for workout monitoring using pose estimation and predefined angles."""
# Check if the model name ends with '-pose'
if "model" in kwargs and "-pose" not in kwargs["model"]:
kwargs["model"] = "yolo11n-pose.pt"
@ -31,12 +55,22 @@ class AIGym(BaseSolution):
def monitor(self, im0):
"""
Monitor the workouts using Ultralytics YOLO Pose Model: https://docs.ultralytics.com/tasks/pose/.
Monitors workouts using Ultralytics YOLO Pose Model.
This function processes an input image to track and analyze human poses for workout monitoring. It uses
the YOLO Pose model to detect keypoints, estimate angles, and count repetitions based on predefined
angle thresholds.
Args:
im0 (ndarray): The input image that will be used for processing
Returns
im0 (ndarray): The processed image for more usage
im0 (ndarray): Input image for processing.
Returns:
(ndarray): Processed image with annotations for workout monitoring.
Examples:
>>> gym = AIGym()
>>> image = cv2.imread("workout.jpg")
>>> processed_image = gym.monitor(image)
"""
# Extract tracks
tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"])[0]

@ -12,10 +12,41 @@ from ultralytics.solutions.solutions import BaseSolution # Import a parent clas
class Analytics(BaseSolution):
"""A class to create and update various types of charts (line, bar, pie, area) for visual analytics."""
"""
A class for creating and updating various types of charts for visual analytics.
This class extends BaseSolution to provide functionality for generating line, bar, pie, and area charts
based on object detection and tracking data.
Attributes:
type (str): The type of analytics chart to generate ('line', 'bar', 'pie', or 'area').
x_label (str): Label for the x-axis.
y_label (str): Label for the y-axis.
bg_color (str): Background color of the chart frame.
fg_color (str): Foreground color of the chart frame.
title (str): Title of the chart window.
max_points (int): Maximum number of data points to display on the chart.
fontsize (int): Font size for text display.
color_cycle (cycle): Cyclic iterator for chart colors.
total_counts (int): Total count of detected objects (used for line charts).
clswise_count (Dict[str, int]): Dictionary for class-wise object counts.
fig (Figure): Matplotlib figure object for the chart.
ax (Axes): Matplotlib axes object for the chart.
canvas (FigureCanvas): Canvas for rendering the chart.
Methods:
process_data: Processes image data and updates the chart.
update_graph: Updates the chart with new data points.
Examples:
>>> analytics = Analytics(analytics_type="line")
>>> frame = cv2.imread("image.jpg")
>>> processed_frame = analytics.process_data(frame, frame_number=1)
>>> cv2.imshow("Analytics", processed_frame)
"""
def __init__(self, **kwargs):
"""Initialize the Analytics class with various chart types."""
"""Initialize Analytics class with various chart types for visual data representation."""
super().__init__(**kwargs)
self.type = self.CFG["analytics_type"] # extract type of analytics
@ -31,8 +62,8 @@ class Analytics(BaseSolution):
figsize = (19.2, 10.8) # Set output image size 1920 * 1080
self.color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"])
self.total_counts = 0 # count variable for storing total counts i.e for line
self.clswise_count = {} # dictionary for classwise counts
self.total_counts = 0 # count variable for storing total counts i.e. for line
self.clswise_count = {} # dictionary for class-wise counts
# Ensure line and area chart
if self.type in {"line", "area"}:
@ -48,15 +79,28 @@ class Analytics(BaseSolution):
self.canvas = FigureCanvas(self.fig) # Set common axis properties
self.ax.set_facecolor(self.bg_color)
self.color_mapping = {}
self.ax.axis("equal") if self.type == "pie" else None # Ensure pie chart is circular
if self.type == "pie": # Ensure pie chart is circular
self.ax.axis("equal")
def process_data(self, im0, frame_number):
"""
Process the image data, run object tracking.
Processes image data and runs object tracking to update analytics charts.
Args:
im0 (ndarray): Input image for processing.
frame_number (int): Video frame # for plotting the data.
im0 (np.ndarray): Input image for processing.
frame_number (int): Video frame number for plotting the data.
Returns:
(np.ndarray): Processed image with updated analytics chart.
Raises:
ModuleNotFoundError: If an unsupported chart type is specified.
Examples:
>>> analytics = Analytics(analytics_type="line")
>>> frame = np.zeros((480, 640, 3), dtype=np.uint8)
>>> processed_frame = analytics.process_data(frame, frame_number=1)
"""
self.extract_tracks(im0) # Extract tracks
@ -79,13 +123,22 @@ class Analytics(BaseSolution):
def update_graph(self, frame_number, count_dict=None, plot="line"):
"""
Update the graph (line or area) with new data for single or multiple classes.
Updates the graph with new data for single or multiple classes.
Args:
frame_number (int): The current frame number.
count_dict (dict, optional): Dictionary with class names as keys and counts as values for multiple classes.
If None, updates a single line graph.
plot (str): Type of the plot i.e. line, bar or area.
count_dict (Dict[str, int] | None): Dictionary with class names as keys and counts as values for multiple
classes. If None, updates a single line graph.
plot (str): Type of the plot. Options are 'line', 'bar', 'pie', or 'area'.
Returns:
(np.ndarray): Updated image containing the graph.
Examples:
>>> analytics = Analytics()
>>> frame_number = 10
>>> count_dict = {"person": 5, "car": 3}
>>> updated_image = analytics.update_graph(frame_number, count_dict, plot="bar")
"""
if count_dict is None:
# Single line update

@ -4,15 +4,41 @@ import math
import cv2
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
from ultralytics.solutions.solutions import BaseSolution
from ultralytics.utils.plotting import Annotator, colors
class DistanceCalculation(BaseSolution):
"""A class to calculate distance between two objects in a real-time video stream based on their tracks."""
"""
A class to calculate distance between two objects in a real-time video stream based on their tracks.
This class extends BaseSolution to provide functionality for selecting objects and calculating the distance
between them in a video stream using YOLO object detection and tracking.
Attributes:
left_mouse_count (int): Counter for left mouse button clicks.
selected_boxes (Dict[int, List[float]]): Dictionary to store selected bounding boxes and their track IDs.
annotator (Annotator): An instance of the Annotator class for drawing on the image.
boxes (List[List[float]]): List of bounding boxes for detected objects.
track_ids (List[int]): List of track IDs for detected objects.
clss (List[int]): List of class indices for detected objects.
names (List[str]): List of class names that the model can detect.
centroids (List[List[int]]): List to store centroids of selected bounding boxes.
Methods:
mouse_event_for_distance: Handles mouse events for selecting objects in the video stream.
calculate: Processes video frames and calculates the distance between selected objects.
Examples:
>>> distance_calc = DistanceCalculation()
>>> frame = cv2.imread("frame.jpg")
>>> processed_frame = distance_calc.calculate(frame)
>>> cv2.imshow("Distance Calculation", processed_frame)
>>> cv2.waitKey(0)
"""
def __init__(self, **kwargs):
"""Initializes the DistanceCalculation class with the given parameters."""
"""Initializes the DistanceCalculation class for measuring object distances in video streams."""
super().__init__(**kwargs)
# Mouse event information
@ -21,14 +47,18 @@ class DistanceCalculation(BaseSolution):
def mouse_event_for_distance(self, event, x, y, flags, param):
"""
Handles mouse events to select regions in a real-time video stream.
Handles mouse events to select regions in a real-time video stream for distance calculation.
Args:
event (int): Type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
event (int): Type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN).
x (int): X-coordinate of the mouse pointer.
y (int): Y-coordinate of the mouse pointer.
flags (int): Flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.).
param (dict): Additional parameters passed to the function.
flags (int): Flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY).
param (Dict): Additional parameters passed to the function.
Examples:
>>> # Assuming 'dc' is an instance of DistanceCalculation
>>> cv2.setMouseCallback("window_name", dc.mouse_event_for_distance)
"""
if event == cv2.EVENT_LBUTTONDOWN:
self.left_mouse_count += 1
@ -43,13 +73,23 @@ class DistanceCalculation(BaseSolution):
def calculate(self, im0):
"""
Processes the video frame and calculates the distance between two bounding boxes.
Processes a video frame and calculates the distance between two selected bounding boxes.
This method extracts tracks from the input frame, annotates bounding boxes, and calculates the distance
between two user-selected objects if they have been chosen.
Args:
im0 (ndarray): The image frame.
im0 (numpy.ndarray): The input image frame to process.
Returns:
(ndarray): The processed image frame.
(numpy.ndarray): The processed image frame with annotations and distance calculations.
Examples:
>>> import numpy as np
>>> from ultralytics.solutions import DistanceCalculation
>>> dc = DistanceCalculation()
>>> frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> processed_frame = dc.calculate(frame)
"""
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
self.extract_tracks(im0) # Extract tracks

@ -3,15 +3,40 @@
import cv2
import numpy as np
from ultralytics.solutions.object_counter import ObjectCounter # Import object counter class
from ultralytics.solutions.object_counter import ObjectCounter
from ultralytics.utils.plotting import Annotator
class Heatmap(ObjectCounter):
"""A class to draw heatmaps in real-time video stream based on their tracks."""
"""
A class to draw heatmaps in real-time video streams based on object tracks.
This class extends the ObjectCounter class to generate and visualize heatmaps of object movements in video
streams. It uses tracked object positions to create a cumulative heatmap effect over time.
Attributes:
initialized (bool): Flag indicating whether the heatmap has been initialized.
colormap (int): OpenCV colormap used for heatmap visualization.
heatmap (np.ndarray): Array storing the cumulative heatmap data.
annotator (Annotator): Object for drawing annotations on the image.
Methods:
heatmap_effect: Calculates and updates the heatmap effect for a given bounding box.
generate_heatmap: Generates and applies the heatmap effect to each frame.
Examples:
>>> from ultralytics.solutions import Heatmap
>>> heatmap = Heatmap(model="yolov8n.pt", colormap=cv2.COLORMAP_JET)
>>> results = heatmap("path/to/video.mp4")
>>> for result in results:
... print(result.speed) # Print inference speed
... cv2.imshow("Heatmap", result.plot())
... if cv2.waitKey(1) & 0xFF == ord("q"):
... break
"""
def __init__(self, **kwargs):
"""Initializes function for heatmap class with default values."""
"""Initializes the Heatmap class for real-time video stream heatmap generation based on object tracks."""
super().__init__(**kwargs)
self.initialized = False # bool variable for heatmap initialization
@ -23,10 +48,15 @@ class Heatmap(ObjectCounter):
def heatmap_effect(self, box):
"""
Efficient calculation of heatmap area and effect location for applying colormap.
Efficiently calculates heatmap area and effect location for applying colormap.
Args:
box (list): Bounding Box coordinates data [x0, y0, x1, y1]
box (List[float]): Bounding box coordinates [x0, y0, x1, y1].
Examples:
>>> heatmap = Heatmap()
>>> box = [100, 100, 200, 200]
>>> heatmap.heatmap_effect(box)
"""
x0, y0, x1, y1 = map(int, box)
radius_squared = (min(x1 - x0, y1 - y0) // 2) ** 2
@ -48,9 +78,15 @@ class Heatmap(ObjectCounter):
Generate heatmap for each frame using Ultralytics.
Args:
im0 (ndarray): Input image array for processing
im0 (np.ndarray): Input image array for processing.
Returns:
im0 (ndarray): Processed image for further usage
(np.ndarray): Processed image with heatmap overlay and object counts (if region is specified).
Examples:
>>> heatmap = Heatmap()
>>> im0 = cv2.imread("image.jpg")
>>> result = heatmap.generate_heatmap(im0)
"""
if not self.initialized:
self.heatmap = np.zeros_like(im0, dtype=np.float32) * 0.99
@ -70,16 +106,17 @@ class Heatmap(ObjectCounter):
self.store_classwise_counts(cls) # store classwise counts in dict
# Store tracking previous position and perform object counting
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
prev_position = None
if len(self.track_history[track_id]) > 1:
prev_position = self.track_history[track_id][-2]
self.count_objects(self.track_line, box, track_id, prev_position, cls) # Perform object counting
self.display_counts(im0) if self.region is not None else None # Display the counts on the frame
if self.region is not None:
self.display_counts(im0) # Display the counts on the frame
# Normalize, apply colormap to heatmap and combine with original image
im0 = (
im0
if self.track_data.id is None
else cv2.addWeighted(
if self.track_data.id is not None:
im0 = cv2.addWeighted(
im0,
0.5,
cv2.applyColorMap(
@ -88,7 +125,6 @@ class Heatmap(ObjectCounter):
0.5,
0,
)
)
self.display_output(im0) # display output with base class function
return im0 # return output image for more usage

@ -1,18 +1,40 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from shapely.geometry import LineString, Point
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
from ultralytics.solutions.solutions import BaseSolution
from ultralytics.utils.plotting import Annotator, colors
class ObjectCounter(BaseSolution):
"""A class to manage the counting of objects in a real-time video stream based on their tracks."""
"""
A class to manage the counting of objects in a real-time video stream based on their tracks.
This class extends the BaseSolution class and provides functionality for counting objects moving in and out of a
specified region in a video stream. It supports both polygonal and linear regions for counting.
Attributes:
in_count (int): Counter for objects moving inward.
out_count (int): Counter for objects moving outward.
counted_ids (List[int]): List of IDs of objects that have been counted.
classwise_counts (Dict[str, Dict[str, int]]): Dictionary for counts, categorized by object class.
region_initialized (bool): Flag indicating whether the counting region has been initialized.
show_in (bool): Flag to control display of inward count.
show_out (bool): Flag to control display of outward count.
Methods:
count_objects: Counts objects within a polygonal or linear region.
store_classwise_counts: Initializes class-wise counts if not already present.
display_counts: Displays object counts on the frame.
count: Processes input data (frames or object tracks) and updates counts.
Examples:
>>> counter = ObjectCounter()
>>> frame = cv2.imread("frame.jpg")
>>> processed_frame = counter.count(frame)
>>> print(f"Inward count: {counter.in_count}, Outward count: {counter.out_count}")
"""
def __init__(self, **kwargs):
"""Initialization function for Count class, a child class of BaseSolution class, can be used for counting the
objects.
"""
"""Initializes the ObjectCounter class for real-time object counting in video streams."""
super().__init__(**kwargs)
self.in_count = 0 # Counter for objects moving inward
@ -26,14 +48,23 @@ class ObjectCounter(BaseSolution):
def count_objects(self, track_line, box, track_id, prev_position, cls):
"""
Helper function to count objects within a polygonal region.
Counts objects within a polygonal or linear region based on their tracks.
Args:
track_line (dict): last 30 frame track record
box (list): Bounding box data for specific track in current frame
track_id (int): track ID of the object
prev_position (tuple): last frame position coordinates of the track
cls (int): Class index for classwise count updates
track_line (Dict): Last 30 frame track record for the object.
box (List[float]): Bounding box coordinates [x1, y1, x2, y2] for the specific track in the current frame.
track_id (int): Unique identifier for the tracked object.
prev_position (Tuple[float, float]): Last frame position coordinates (x, y) of the track.
cls (int): Class index for classwise count updates.
Examples:
>>> counter = ObjectCounter()
>>> track_line = {1: [100, 200], 2: [110, 210], 3: [120, 220]}
>>> box = [130, 230, 150, 250]
>>> track_id = 1
>>> prev_position = (120, 220)
>>> cls = 0
>>> counter.count_objects(track_line, box, track_id, prev_position, cls)
"""
if prev_position is None or track_id in self.counted_ids:
return
@ -42,7 +73,7 @@ class ObjectCounter(BaseSolution):
dx = (box[0] - prev_position[0]) * (centroid.x - prev_position[0])
dy = (box[1] - prev_position[1]) * (centroid.y - prev_position[1])
if len(self.region) >= 3 and self.r_s.contains(Point(track_line[-1])):
if len(self.region) >= 3 and self.r_s.contains(self.Point(track_line[-1])):
self.counted_ids.append(track_id)
# For polygon region
if dx > 0:
@ -52,7 +83,7 @@ class ObjectCounter(BaseSolution):
self.out_count += 1
self.classwise_counts[self.names[cls]]["OUT"] += 1
elif len(self.region) < 3 and LineString([prev_position, box[:2]]).intersects(self.l_s):
elif len(self.region) < 3 and self.LineString([prev_position, box[:2]]).intersects(self.r_s):
self.counted_ids.append(track_id)
# For linear region
if dx > 0 and dy > 0:
@ -64,20 +95,34 @@ class ObjectCounter(BaseSolution):
def store_classwise_counts(self, cls):
"""
Initialize class-wise counts if not already present.
Initialize class-wise counts for a specific object class if not already present.
Args:
cls (int): Class index for classwise count updates
cls (int): Class index for classwise count updates.
This method ensures that the 'classwise_counts' dictionary contains an entry for the specified class,
initializing 'IN' and 'OUT' counts to zero if the class is not already present.
Examples:
>>> counter = ObjectCounter()
>>> counter.store_classwise_counts(0) # Initialize counts for class index 0
>>> print(counter.classwise_counts)
{'person': {'IN': 0, 'OUT': 0}}
"""
if self.names[cls] not in self.classwise_counts:
self.classwise_counts[self.names[cls]] = {"IN": 0, "OUT": 0}
def display_counts(self, im0):
"""
Helper function to display object counts on the frame.
Displays object counts on the input image or frame.
Args:
im0 (ndarray): The input image or frame
im0 (numpy.ndarray): The input image or frame to display counts on.
Examples:
>>> counter = ObjectCounter()
>>> frame = cv2.imread("image.jpg")
>>> counter.display_counts(frame)
"""
labels_dict = {
str.capitalize(key): f"{'IN ' + str(value['IN']) if self.show_in else ''} "
@ -91,12 +136,21 @@ class ObjectCounter(BaseSolution):
def count(self, im0):
"""
Processes input data (frames or object tracks) and updates counts.
Processes input data (frames or object tracks) and updates object counts.
This method initializes the counting region, extracts tracks, draws bounding boxes and regions, updates
object counts, and displays the results on the input image.
Args:
im0 (ndarray): The input image that will be used for processing
Returns
im0 (ndarray): The processed image for more usage
im0 (numpy.ndarray): The input image or frame to be processed.
Returns:
(numpy.ndarray): The processed image with annotations and count information.
Examples:
>>> counter = ObjectCounter()
>>> frame = cv2.imread("path/to/image.jpg")
>>> processed_frame = counter.count(frame)
"""
if not self.region_initialized:
self.initialize_region()
@ -122,7 +176,9 @@ class ObjectCounter(BaseSolution):
)
# store previous position of track for object counting
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
prev_position = None
if len(self.track_history[track_id]) > 1:
prev_position = self.track_history[track_id][-2]
self.count_objects(self.track_line, box, track_id, prev_position, cls) # Perform object counting
self.display_counts(im0) # Display the counts on the frame

@ -10,10 +10,44 @@ from ultralytics.utils.plotting import Annotator
class ParkingPtsSelection:
"""Class for selecting and managing parking zone points on images using a Tkinter-based UI."""
"""
A class for selecting and managing parking zone points on images using a Tkinter-based UI.
This class provides functionality to upload an image, select points to define parking zones, and save the
selected points to a JSON file. It uses Tkinter for the graphical user interface.
Attributes:
tk (module): The Tkinter module for GUI operations.
filedialog (module): Tkinter's filedialog module for file selection operations.
messagebox (module): Tkinter's messagebox module for displaying message boxes.
master (tk.Tk): The main Tkinter window.
canvas (tk.Canvas): The canvas widget for displaying the image and drawing bounding boxes.
image (PIL.Image.Image): The uploaded image.
canvas_image (ImageTk.PhotoImage): The image displayed on the canvas.
rg_data (List[List[Tuple[int, int]]]): List of bounding boxes, each defined by 4 points.
current_box (List[Tuple[int, int]]): Temporary storage for the points of the current bounding box.
imgw (int): Original width of the uploaded image.
imgh (int): Original height of the uploaded image.
canvas_max_width (int): Maximum width of the canvas.
canvas_max_height (int): Maximum height of the canvas.
Methods:
setup_ui: Sets up the Tkinter UI components.
initialize_properties: Initializes the necessary properties.
upload_image: Uploads an image, resizes it to fit the canvas, and displays it.
on_canvas_click: Handles mouse clicks to add points for bounding boxes.
draw_box: Draws a bounding box on the canvas.
remove_last_bounding_box: Removes the last bounding box and redraws the canvas.
redraw_canvas: Redraws the canvas with the image and all bounding boxes.
save_to_json: Saves the bounding boxes to a JSON file.
Examples:
>>> parking_selector = ParkingPtsSelection()
>>> # Use the GUI to upload an image, select parking zones, and save the data
"""
def __init__(self):
"""Class initialization method."""
"""Initializes the ParkingPtsSelection class, setting up UI and properties for parking zone point selection."""
check_requirements("tkinter")
import tkinter as tk
from tkinter import filedialog, messagebox
@ -24,7 +58,7 @@ class ParkingPtsSelection:
self.master.mainloop()
def setup_ui(self):
"""Sets up the Tkinter UI components."""
"""Sets up the Tkinter UI components for the parking zone points selection interface."""
self.master = self.tk.Tk()
self.master.title("Ultralytics Parking Zones Points Selector")
self.master.resizable(False, False)
@ -45,14 +79,14 @@ class ParkingPtsSelection:
self.tk.Button(button_frame, text=text, command=cmd).pack(side=self.tk.LEFT)
def initialize_properties(self):
"""Initialize the necessary properties."""
"""Initialize properties for image, canvas, bounding boxes, and dimensions."""
self.image = self.canvas_image = None
self.rg_data, self.current_box = [], []
self.imgw = self.imgh = 0
self.canvas_max_width, self.canvas_max_height = 1280, 720
def upload_image(self):
"""Uploads an image, resizes it to fit the canvas, and displays it."""
"""Uploads and displays an image on the canvas, resizing it to fit within specified dimensions."""
from PIL import Image, ImageTk # scope because ImageTk requires tkinter package
self.image = Image.open(self.filedialog.askopenfilename(filetypes=[("Image Files", "*.png;*.jpg;*.jpeg")]))
@ -76,7 +110,7 @@ class ParkingPtsSelection:
self.rg_data.clear(), self.current_box.clear()
def on_canvas_click(self, event):
"""Handles mouse clicks to add points for bounding boxes."""
"""Handles mouse clicks to add points for bounding boxes on the canvas."""
self.current_box.append((event.x, event.y))
self.canvas.create_oval(event.x - 3, event.y - 3, event.x + 3, event.y + 3, fill="red")
if len(self.current_box) == 4:
@ -85,12 +119,12 @@ class ParkingPtsSelection:
self.current_box.clear()
def draw_box(self, box):
"""Draws a bounding box on the canvas."""
"""Draws a bounding box on the canvas using the provided coordinates."""
for i in range(4):
self.canvas.create_line(box[i], box[(i + 1) % 4], fill="blue", width=2)
def remove_last_bounding_box(self):
"""Removes the last bounding box and redraws the canvas."""
"""Removes the last bounding box from the list and redraws the canvas."""
if not self.rg_data:
self.messagebox.showwarning("Warning", "No bounding boxes to remove.")
return
@ -105,7 +139,7 @@ class ParkingPtsSelection:
self.draw_box(box)
def save_to_json(self):
"""Saves the bounding boxes to a JSON file."""
"""Saves the selected parking zone points to a JSON file with scaled coordinates."""
scale_w, scale_h = self.imgw / self.canvas.winfo_width(), self.imgh / self.canvas.winfo_height()
data = [{"points": [(int(x * scale_w), int(y * scale_h)) for x, y in box]} for box in self.rg_data]
with open("bounding_boxes.json", "w") as f:
@ -114,7 +148,30 @@ class ParkingPtsSelection:
class ParkingManagement(BaseSolution):
"""Manages parking occupancy and availability using YOLO model for real-time monitoring and visualization."""
"""
Manages parking occupancy and availability using YOLO model for real-time monitoring and visualization.
This class extends BaseSolution to provide functionality for parking lot management, including detection of
occupied spaces, visualization of parking regions, and display of occupancy statistics.
Attributes:
json_file (str): Path to the JSON file containing parking region details.
json (List[Dict]): Loaded JSON data containing parking region information.
pr_info (Dict[str, int]): Dictionary storing parking information (Occupancy and Available spaces).
arc (Tuple[int, int, int]): RGB color tuple for available region visualization.
occ (Tuple[int, int, int]): RGB color tuple for occupied region visualization.
dc (Tuple[int, int, int]): RGB color tuple for centroid visualization of detected objects.
Methods:
process_data: Processes model data for parking lot management and visualization.
Examples:
>>> from ultralytics.solutions import ParkingManagement
>>> parking_manager = ParkingManagement(model="yolov8n.pt", json_file="parking_regions.json")
>>> results = parking_manager(source="parking_lot_video.mp4")
>>> print(f"Occupied spaces: {parking_manager.pr_info['Occupancy']}")
>>> print(f"Available spaces: {parking_manager.pr_info['Available']}")
"""
def __init__(self, **kwargs):
"""Initializes the parking management system with a YOLO model and visualization settings."""
@ -136,10 +193,19 @@ class ParkingManagement(BaseSolution):
def process_data(self, im0):
"""
Process the model data for parking lot management.
Processes the model data for parking lot management.
This function analyzes the input image, extracts tracks, and determines the occupancy status of parking
regions defined in the JSON file. It annotates the image with occupied and available parking spots,
and updates the parking information.
Args:
im0 (ndarray): inference image.
im0 (np.ndarray): The input inference image.
Examples:
>>> parking_manager = ParkingManagement(json_file="parking_regions.json")
>>> image = cv2.imread("parking_lot.jpg")
>>> parking_manager.process_data(image)
"""
self.extract_tracks(im0) # extract tracks from im0
es, fs = len(self.json), 0 # empty slots, filled slots

@ -1,16 +1,40 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from shapely.geometry import Point
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
from ultralytics.solutions.solutions import BaseSolution
from ultralytics.utils.plotting import Annotator, colors
class QueueManager(BaseSolution):
"""A class to manage the queue in a real-time video stream based on object tracks."""
"""
Manages queue counting in real-time video streams based on object tracks.
This class extends BaseSolution to provide functionality for tracking and counting objects within a specified
region in video frames.
Attributes:
counts (int): The current count of objects in the queue.
rect_color (Tuple[int, int, int]): RGB color tuple for drawing the queue region rectangle.
region_length (int): The number of points defining the queue region.
annotator (Annotator): An instance of the Annotator class for drawing on frames.
track_line (List[Tuple[int, int]]): List of track line coordinates.
track_history (Dict[int, List[Tuple[int, int]]]): Dictionary storing tracking history for each object.
Methods:
initialize_region: Initializes the queue region.
process_queue: Processes a single frame for queue management.
extract_tracks: Extracts object tracks from the current frame.
store_tracking_history: Stores the tracking history for an object.
display_output: Displays the processed output.
Examples:
>>> queue_manager = QueueManager(source="video.mp4", region=[100, 100, 200, 200, 300, 300])
>>> for frame in video_stream:
... processed_frame = queue_manager.process_queue(frame)
... cv2.imshow("Queue Management", processed_frame)
"""
def __init__(self, **kwargs):
"""Initializes the QueueManager with specified parameters for tracking and counting objects."""
"""Initializes the QueueManager with parameters for tracking and counting objects in a video stream."""
super().__init__(**kwargs)
self.initialize_region()
self.counts = 0 # Queue counts Information
@ -19,12 +43,31 @@ class QueueManager(BaseSolution):
def process_queue(self, im0):
"""
Main function to start the queue management process.
Processes the queue management for a single frame of video.
Args:
im0 (ndarray): The input image that will be used for processing
Returns
im0 (ndarray): The processed image for more usage
im0 (numpy.ndarray): Input image for processing, typically a frame from a video stream.
Returns:
(numpy.ndarray): Processed image with annotations, bounding boxes, and queue counts.
This method performs the following steps:
1. Resets the queue count for the current frame.
2. Initializes an Annotator object for drawing on the image.
3. Extracts tracks from the image.
4. Draws the counting region on the image.
5. For each detected object:
- Draws bounding boxes and labels.
- Stores tracking history.
- Draws centroids and tracks.
- Checks if the object is inside the counting region and updates the count.
6. Displays the queue count on the image.
7. Displays the processed output.
Examples:
>>> queue_manager = QueueManager()
>>> frame = cv2.imread("frame.jpg")
>>> processed_frame = queue_manager.process_queue(frame)
"""
self.counts = 0 # Reset counts every frame
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
@ -48,8 +91,10 @@ class QueueManager(BaseSolution):
track_history = self.track_history.get(track_id, [])
# store previous position of track and check if the object is inside the counting region
prev_position = track_history[-2] if len(track_history) > 1 else None
if self.region_length >= 3 and prev_position and self.r_s.contains(Point(self.track_line[-1])):
prev_position = None
if len(track_history) > 1:
prev_position = track_history[-2]
if self.region_length >= 3 and prev_position and self.r_s.contains(self.Point(self.track_line[-1])):
self.counts += 1
# Display queue counts

@ -9,21 +9,51 @@ from ultralytics import YOLO
from ultralytics.utils import LOGGER, yaml_load
from ultralytics.utils.checks import check_imshow, check_requirements
check_requirements("shapely>=2.0.0")
from shapely.geometry import LineString, Polygon
DEFAULT_SOL_CFG_PATH = Path(__file__).resolve().parents[1] / "cfg/solutions/default.yaml"
class BaseSolution:
"""A class to manage all the Ultralytics Solutions: https://docs.ultralytics.com/solutions/."""
"""
A base class for managing Ultralytics Solutions.
This class provides core functionality for various Ultralytics Solutions, including model loading, object tracking,
and region initialization.
Attributes:
LineString (shapely.geometry.LineString): Class for creating line string geometries.
Polygon (shapely.geometry.Polygon): Class for creating polygon geometries.
Point (shapely.geometry.Point): Class for creating point geometries.
CFG (Dict): Configuration dictionary loaded from a YAML file and updated with kwargs.
region (List[Tuple[int, int]]): List of coordinate tuples defining a region of interest.
line_width (int): Width of lines used in visualizations.
model (ultralytics.YOLO): Loaded YOLO model instance.
names (Dict[int, str]): Dictionary mapping class indices to class names.
env_check (bool): Flag indicating whether the environment supports image display.
track_history (collections.defaultdict): Dictionary to store tracking history for each object.
Methods:
extract_tracks: Apply object tracking and extract tracks from an input image.
store_tracking_history: Store object tracking history for a given track ID and bounding box.
initialize_region: Initialize the counting region and line segment based on configuration.
display_output: Display the results of processing, including showing frames or saving results.
Examples:
>>> solution = BaseSolution(model="yolov8n.pt", region=[(0, 0), (100, 0), (100, 100), (0, 100)])
>>> solution.initialize_region()
>>> image = cv2.imread("image.jpg")
>>> solution.extract_tracks(image)
>>> solution.display_output(image)
"""
def __init__(self, **kwargs):
"""
Base initializer for all solutions.
"""Initializes the BaseSolution class with configuration settings and YOLO model for Ultralytics solutions."""
check_requirements("shapely>=2.0.0")
from shapely.geometry import LineString, Point, Polygon
self.LineString = LineString
self.Polygon = Polygon
self.Point = Point
Child classes should call this with necessary parameters.
"""
# Load config and update with args
self.CFG = yaml_load(DEFAULT_SOL_CFG_PATH)
self.CFG.update(kwargs)
@ -42,10 +72,15 @@ class BaseSolution:
def extract_tracks(self, im0):
"""
Apply object tracking and extract tracks.
Applies object tracking and extracts tracks from an input image or frame.
Args:
im0 (ndarray): The input image or frame
im0 (ndarray): The input image or frame.
Examples:
>>> solution = BaseSolution()
>>> frame = cv2.imread("path/to/image.jpg")
>>> solution.extract_tracks(frame)
"""
self.tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"])
@ -62,11 +97,18 @@ class BaseSolution:
def store_tracking_history(self, track_id, box):
"""
Store object tracking history.
Stores the tracking history of an object.
This method updates the tracking history for a given object by appending the center point of its
bounding box to the track line. It maintains a maximum of 30 points in the tracking history.
Args:
track_id (int): The track ID of the object
box (list): Bounding box coordinates of the object
track_id (int): The unique identifier for the tracked object.
box (List[float]): The bounding box coordinates of the object in the format [x1, y1, x2, y2].
Examples:
>>> solution = BaseSolution()
>>> solution.store_tracking_history(1, [100, 200, 300, 400])
"""
# Store tracking history
self.track_line = self.track_history[track_id]
@ -75,19 +117,32 @@ class BaseSolution:
self.track_line.pop(0)
def initialize_region(self):
"""Initialize the counting region and line segment based on config."""
self.region = [(20, 400), (1080, 404), (1080, 360), (20, 360)] if self.region is None else self.region
self.r_s = Polygon(self.region) if len(self.region) >= 3 else LineString(self.region) # region segment
self.l_s = LineString(
[(self.region[0][0], self.region[0][1]), (self.region[1][0], self.region[1][1])]
) # line segment
"""Initialize the counting region and line segment based on configuration settings."""
if self.region is None:
self.region = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
self.r_s = (
self.Polygon(self.region) if len(self.region) >= 3 else self.LineString(self.region)
) # region or line
def display_output(self, im0):
"""
Display the results of the processing, which could involve showing frames, printing counts, or saving results.
This method is responsible for visualizing the output of the object detection and tracking process. It displays
the processed frame with annotations, and allows for user interaction to close the display.
Args:
im0 (ndarray): The input image or frame
im0 (numpy.ndarray): The input image or frame that has been processed and annotated.
Examples:
>>> solution = BaseSolution()
>>> frame = cv2.imread("path/to/image.jpg")
>>> solution.display_output(frame)
Notes:
- This method will only display output if the 'show' configuration is set to True and the environment
supports image display.
- The display can be closed by pressing the 'q' key.
"""
if self.CFG.get("show") and self.env_check:
cv2.imshow("Ultralytics Solutions", im0)

@ -4,15 +4,43 @@ from time import time
import numpy as np
from ultralytics.solutions.solutions import BaseSolution, LineString
from ultralytics.solutions.solutions import BaseSolution
from ultralytics.utils.plotting import Annotator, colors
class SpeedEstimator(BaseSolution):
"""A class to estimate the speed of objects in a real-time video stream based on their tracks."""
"""
A class to estimate the speed of objects in a real-time video stream based on their tracks.
This class extends the BaseSolution class and provides functionality for estimating object speeds using
tracking data in video streams.
Attributes:
spd (Dict[int, float]): Dictionary storing speed data for tracked objects.
trkd_ids (List[int]): List of tracked object IDs that have already been speed-estimated.
trk_pt (Dict[int, float]): Dictionary storing previous timestamps for tracked objects.
trk_pp (Dict[int, Tuple[float, float]]): Dictionary storing previous positions for tracked objects.
annotator (Annotator): Annotator object for drawing on images.
region (List[Tuple[int, int]]): List of points defining the speed estimation region.
track_line (List[Tuple[float, float]]): List of points representing the object's track.
r_s (LineString): LineString object representing the speed estimation region.
Methods:
initialize_region: Initializes the speed estimation region.
estimate_speed: Estimates the speed of objects based on tracking data.
store_tracking_history: Stores the tracking history for an object.
extract_tracks: Extracts tracks from the current frame.
display_output: Displays the output with annotations.
Examples:
>>> estimator = SpeedEstimator()
>>> frame = cv2.imread("frame.jpg")
>>> processed_frame = estimator.estimate_speed(frame)
>>> cv2.imshow("Speed Estimation", processed_frame)
"""
def __init__(self, **kwargs):
"""Initializes the SpeedEstimator with the given parameters."""
"""Initializes the SpeedEstimator object with speed estimation parameters and data structures."""
super().__init__(**kwargs)
self.initialize_region() # Initialize speed region
@ -27,9 +55,15 @@ class SpeedEstimator(BaseSolution):
Estimates the speed of objects based on tracking data.
Args:
im0 (ndarray): The input image that will be used for processing
Returns
im0 (ndarray): The processed image for more usage
im0 (np.ndarray): Input image for processing. Shape is typically (H, W, C) for RGB images.
Returns:
(np.ndarray): Processed image with speed estimations and annotations.
Examples:
>>> estimator = SpeedEstimator()
>>> image = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> processed_image = estimator.estimate_speed(image)
"""
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
self.extract_tracks(im0) # Extract tracks
@ -56,7 +90,7 @@ class SpeedEstimator(BaseSolution):
)
# Calculate object speed and direction based on region intersection
if LineString([self.trk_pp[track_id], self.track_line[-1]]).intersects(self.l_s):
if self.LineString([self.trk_pp[track_id], self.track_line[-1]]).intersects(self.r_s):
direction = "known"
else:
direction = "unknown"

@ -11,7 +11,7 @@ from ultralytics.utils.downloads import GITHUB_ASSETS_STEMS
def inference(model=None):
"""Runs real-time object detection on video input using Ultralytics YOLO11 in a Streamlit application."""
"""Performs real-time object detection on video input using YOLO in a Streamlit web application."""
check_requirements("streamlit>=1.29.0") # scope imports for faster ultralytics package load speeds
import streamlit as st
@ -108,7 +108,7 @@ def inference(model=None):
st.warning("Failed to read frame from webcam. Please make sure the webcam is connected properly.")
break
prev_time = time.time()
prev_time = time.time() # Store initial time for FPS calculation
# Store model predictions
if enable_trk == "Yes":
@ -120,7 +120,6 @@ def inference(model=None):
# Calculate model FPS
curr_time = time.time()
fps = 1 / (curr_time - prev_time)
prev_time = curr_time
# display frame
org_frame.image(frame, channels="BGR")

Loading…
Cancel
Save