Use `chart.js@latest` (#19372)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
pull/19378/head
Glenn Jocher 1 month ago committed by GitHub
parent 54e632a719
commit 8c5f1b3426
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 2
      docs/en/models/rtdetr.md
  2. 2
      docs/en/models/yolo11.md
  3. 108
      docs/en/models/yolov10.md
  4. 2
      docs/en/models/yolov5.md
  5. 2
      docs/en/models/yolov6.md
  6. 2
      docs/en/models/yolov7.md
  7. 2
      docs/en/models/yolov8.md
  8. 2
      docs/en/models/yolov9.md
  9. 2
      docs/en/modes/benchmark.md

@ -36,7 +36,7 @@ The Ultralytics Python API provides pre-trained PaddlePaddle RT-DETR models with
- RT-DETR-L: 53.0% AP on COCO val2017, 114 FPS on T4 GPU - RT-DETR-L: 53.0% AP on COCO val2017, 114 FPS on T4 GPU
- RT-DETR-X: 54.8% AP on COCO val2017, 74 FPS on T4 GPU - RT-DETR-X: 54.8% AP on COCO val2017, 74 FPS on T4 GPU
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script> <script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script> <script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["RTDETRv2"]'></canvas> <canvas id="modelComparisonChart" width="1024" height="400" active-models='["RTDETRv2"]'></canvas>

@ -55,7 +55,7 @@ This table provides an overview of the YOLO11 model variants, showcasing their a
## Performance Metrics ## Performance Metrics
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script> <script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script> <script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLO11"]'></canvas> <canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLO11"]'></canvas>

@ -44,30 +44,30 @@ The architecture of YOLOv10 builds upon the strengths of previous YOLO models wh
YOLOv10 comes in various model scales to cater to different application needs: YOLOv10 comes in various model scales to cater to different application needs:
- **YOLOv10-N**: Nano version for extremely resource-constrained environments. - **YOLOv10n**: Nano version for extremely resource-constrained environments.
- **YOLOv10-S**: Small version balancing speed and accuracy. - **YOLOv10s**: Small version balancing speed and accuracy.
- **YOLOv10-M**: Medium version for general-purpose use. - **YOLOv10m**: Medium version for general-purpose use.
- **YOLOv10-B**: Balanced version with increased width for higher accuracy. - **YOLOv10b**: Balanced version with increased width for higher accuracy.
- **YOLOv10-L**: Large version for higher accuracy at the cost of increased computational resources. - **YOLOv10l**: Large version for higher accuracy at the cost of increased computational resources.
- **YOLOv10-X**: Extra-large version for maximum accuracy and performance. - **YOLOv10x**: Extra-large version for maximum accuracy and performance.
## Performance ## Performance
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script> <script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script> <script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv10"]'></canvas> <canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv10"]'></canvas>
YOLOv10 outperforms previous YOLO versions and other state-of-the-art models in terms of accuracy and efficiency. For example, YOLOv10-S is 1.8x faster than RT-DETR-R18 with similar AP on the COCO dataset, and YOLOv10-B has 46% less latency and 25% fewer parameters than YOLOv9-C with the same performance. YOLOv10 outperforms previous YOLO versions and other state-of-the-art models in terms of accuracy and efficiency. For example, YOLOv10s is 1.8x faster than RT-DETR-R18 with similar AP on the COCO dataset, and YOLOv10b has 46% less latency and 25% fewer parameters than YOLOv9-C with the same performance.
| Model | Input Size | AP<sup>val</sup> | FLOPs (G) | Latency (ms) | | Model | Input Size | AP<sup>val</sup> | FLOPs (G) | Latency (ms) |
| -------------- | ---------- | ---------------- | --------- | ------------ | | ------------- | ---------- | ---------------- | --------- | ------------ |
| [YOLOv10-N][1] | 640 | 38.5 | **6.7** | **1.84** | | [YOLOv10n][1] | 640 | 38.5 | **6.7** | **1.84** |
| [YOLOv10-S][2] | 640 | 46.3 | 21.6 | 2.49 | | [YOLOv10s][2] | 640 | 46.3 | 21.6 | 2.49 |
| [YOLOv10-M][3] | 640 | 51.1 | 59.1 | 4.74 | | [YOLOv10m][3] | 640 | 51.1 | 59.1 | 4.74 |
| [YOLOv10-B][4] | 640 | 52.5 | 92.0 | 5.74 | | [YOLOv10b][4] | 640 | 52.5 | 92.0 | 5.74 |
| [YOLOv10-L][5] | 640 | 53.2 | 120.3 | 7.28 | | [YOLOv10l][5] | 640 | 53.2 | 120.3 | 7.28 |
| [YOLOv10-X][6] | 640 | **54.4** | 160.4 | 10.70 | | [YOLOv10x][6] | 640 | **54.4** | 160.4 | 10.70 |
Latency measured with TensorRT FP16 on T4 GPU. Latency measured with TensorRT FP16 on T4 GPU.
@ -100,39 +100,39 @@ YOLOv10 has been extensively tested on standard benchmarks like COCO, demonstrat
Compared to other state-of-the-art detectors: Compared to other state-of-the-art detectors:
- YOLOv10-S / X are 1.8× / 1.3× faster than RT-DETR-R18 / R101 with similar accuracy - YOLOv10s / x are 1.8× / 1.3× faster than RT-DETR-R18 / R101 with similar accuracy
- YOLOv10-B has 25% fewer parameters and 46% lower latency than YOLOv9-C at same accuracy - YOLOv10b has 25% fewer parameters and 46% lower latency than YOLOv9-C at same accuracy
- YOLOv10-L / X outperform YOLOv8-L / X by 0.3 AP / 0.5 AP with 1.8× / 2.3× fewer parameters - YOLOv10l / x outperform YOLOv8l / x by 0.3 AP / 0.5 AP with 1.8× / 2.3× fewer parameters
Here is a detailed comparison of YOLOv10 variants with other state-of-the-art models: Here is a detailed comparison of YOLOv10 variants with other state-of-the-art models:
| Model | Params<br><sup>(M) | FLOPs<br><sup>(G) | mAP<sup>val<br>50-95 | Latency<br><sup>(ms) | Latency-forward<br><sup>(ms) | | Model | Params<br><sup>(M) | FLOPs<br><sup>(G) | mAP<sup>val<br>50-95 | Latency<br><sup>(ms) | Latency-forward<br><sup>(ms) |
| ------------------ | ------------------ | ----------------- | -------------------- | -------------------- | ---------------------------- | | ----------------- | ------------------ | ----------------- | -------------------- | -------------------- | ---------------------------- |
| YOLOv6-3.0-N | 4.7 | 11.4 | 37.0 | 2.69 | **1.76** | | YOLOv6-3.0-N | 4.7 | 11.4 | 37.0 | 2.69 | **1.76** |
| Gold-YOLO-N | 5.6 | 12.1 | **39.6** | 2.92 | 1.82 | | Gold-YOLO-N | 5.6 | 12.1 | **39.6** | 2.92 | 1.82 |
| YOLOv8-N | 3.2 | 8.7 | 37.3 | 6.16 | 1.77 | | YOLOv8n | 3.2 | 8.7 | 37.3 | 6.16 | 1.77 |
| **[YOLOv10-N][1]** | **2.3** | **6.7** | 39.5 | **1.84** | 1.79 | | **[YOLOv10n][1]** | **2.3** | **6.7** | 39.5 | **1.84** | 1.79 |
| | | | | | | | | | | | | |
| YOLOv6-3.0-S | 18.5 | 45.3 | 44.3 | 3.42 | 2.35 | | YOLOv6-3.0-S | 18.5 | 45.3 | 44.3 | 3.42 | 2.35 |
| Gold-YOLO-S | 21.5 | 46.0 | 45.4 | 3.82 | 2.73 | | Gold-YOLO-S | 21.5 | 46.0 | 45.4 | 3.82 | 2.73 |
| YOLOv8-S | 11.2 | 28.6 | 44.9 | 7.07 | **2.33** | | YOLOv8s | 11.2 | 28.6 | 44.9 | 7.07 | **2.33** |
| **[YOLOv10-S][2]** | **7.2** | **21.6** | **46.8** | **2.49** | 2.39 | | **[YOLOv10s][2]** | **7.2** | **21.6** | **46.8** | **2.49** | 2.39 |
| | | | | | | | | | | | | |
| RT-DETR-R18 | 20.0 | 60.0 | 46.5 | **4.58** | **4.49** | | RT-DETR-R18 | 20.0 | 60.0 | 46.5 | **4.58** | **4.49** |
| YOLOv6-3.0-M | 34.9 | 85.8 | 49.1 | 5.63 | 4.56 | | YOLOv6-3.0-M | 34.9 | 85.8 | 49.1 | 5.63 | 4.56 |
| Gold-YOLO-M | 41.3 | 87.5 | 49.8 | 6.38 | 5.45 | | Gold-YOLO-M | 41.3 | 87.5 | 49.8 | 6.38 | 5.45 |
| YOLOv8-M | 25.9 | 78.9 | 50.6 | 9.50 | 5.09 | | YOLOv8m | 25.9 | 78.9 | 50.6 | 9.50 | 5.09 |
| **[YOLOv10-M][3]** | **15.4** | **59.1** | **51.3** | 4.74 | 4.63 | | **[YOLOv10m][3]** | **15.4** | **59.1** | **51.3** | 4.74 | 4.63 |
| | | | | | | | | | | | | |
| YOLOv6-3.0-L | 59.6 | 150.7 | 51.8 | 9.02 | 7.90 | | YOLOv6-3.0-L | 59.6 | 150.7 | 51.8 | 9.02 | 7.90 |
| Gold-YOLO-L | 75.1 | 151.7 | 51.8 | 10.65 | 9.78 | | Gold-YOLO-L | 75.1 | 151.7 | 51.8 | 10.65 | 9.78 |
| YOLOv8-L | 43.7 | 165.2 | 52.9 | 12.39 | 8.06 | | YOLOv8l | 43.7 | 165.2 | 52.9 | 12.39 | 8.06 |
| RT-DETR-R50 | 42.0 | 136.0 | 53.1 | 9.20 | 9.07 | | RT-DETR-R50 | 42.0 | 136.0 | 53.1 | 9.20 | 9.07 |
| **[YOLOv10-L][5]** | **24.4** | **120.3** | **53.4** | **7.28** | **7.21** | | **[YOLOv10l][5]** | **24.4** | **120.3** | **53.4** | **7.28** | **7.21** |
| | | | | | | | | | | | | |
| YOLOv8-X | 68.2 | 257.8 | 53.9 | 16.86 | 12.83 | | YOLOv8x | 68.2 | 257.8 | 53.9 | 16.86 | 12.83 |
| RT-DETR-R101 | 76.0 | 259.0 | 54.3 | 13.71 | 13.58 | | RT-DETR-R101 | 76.0 | 259.0 | 54.3 | 13.71 | 13.58 |
| **[YOLOv10-X][6]** | **29.5** | **160.4** | **54.4** | **10.70** | **10.60** | | **[YOLOv10x][6]** | **29.5** | **160.4** | **54.4** | **10.70** | **10.60** |
[1]: https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10n.pt [1]: https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10n.pt
[2]: https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10s.pt [2]: https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10s.pt
@ -264,7 +264,7 @@ For easy inference, you can use the Ultralytics YOLO Python library or the comma
```python ```python
from ultralytics import YOLO from ultralytics import YOLO
# Load the pre-trained YOLOv10-N model # Load the pre-trained YOLOv10n model
model = YOLO("yolov10n.pt") model = YOLO("yolov10n.pt")
results = model("image.jpg") results = model("image.jpg")
results[0].show() results[0].show()
@ -282,12 +282,12 @@ For more usage examples, visit our [Usage Examples](#usage-examples) section.
YOLOv10 offers several model variants to cater to different use cases: YOLOv10 offers several model variants to cater to different use cases:
- **YOLOv10-N**: Suitable for extremely resource-constrained environments - **YOLOv10n**: Suitable for extremely resource-constrained environments
- **YOLOv10-S**: Balances speed and accuracy - **YOLOv10s**: Balances speed and accuracy
- **YOLOv10-M**: General-purpose use - **YOLOv10m**: General-purpose use
- **YOLOv10-B**: Higher accuracy with increased width - **YOLOv10b**: Higher accuracy with increased width
- **YOLOv10-L**: High accuracy at the cost of computational resources - **YOLOv10l**: High accuracy at the cost of computational resources
- **YOLOv10-X**: Maximum accuracy and performance - **YOLOv10x**: Maximum accuracy and performance
Each variant is designed for different computational needs and accuracy requirements, making them versatile for a variety of applications. Explore the [Model Variants](#model-variants) section for more information. Each variant is designed for different computational needs and accuracy requirements, making them versatile for a variety of applications. Explore the [Model Variants](#model-variants) section for more information.
@ -301,4 +301,4 @@ YOLOv10 supports several export formats, including TorchScript, ONNX, OpenVINO,
### What are the performance benchmarks for YOLOv10 models? ### What are the performance benchmarks for YOLOv10 models?
YOLOv10 outperforms previous YOLO versions and other state-of-the-art models in both accuracy and efficiency. For example, YOLOv10-S is 1.8x faster than RT-DETR-R18 with a similar AP on the COCO dataset. YOLOv10-B shows 46% less latency and 25% fewer parameters than YOLOv9-C with the same performance. Detailed benchmarks can be found in the [Comparisons](#comparisons) section. YOLOv10 outperforms previous YOLO versions and other state-of-the-art models in both accuracy and efficiency. For example, YOLOv10s is 1.8x faster than RT-DETR-R18 with a similar AP on the COCO dataset. YOLOv10b shows 46% less latency and 25% fewer parameters than YOLOv9-C with the same performance. Detailed benchmarks can be found in the [Comparisons](#comparisons) section.

@ -32,7 +32,7 @@ This table provides a detailed overview of the YOLOv5u model variants, highlight
## Performance Metrics ## Performance Metrics
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script> <script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script> <script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv5"]'></canvas> <canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv5"]'></canvas>

@ -22,7 +22,7 @@ keywords: Meituan YOLOv6, object detection, real-time applications, BiC module,
## Performance Metrics ## Performance Metrics
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script> <script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script> <script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv6-3.0"]'></canvas> <canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv6-3.0"]'></canvas>

@ -14,7 +14,7 @@ YOLOv7 is a state-of-the-art real-time object detector that surpasses all known
From the results in the YOLO comparison table we know that the proposed method has the best speed-accuracy trade-off comprehensively. If we compare YOLOv7-tiny-SiLU with YOLOv5-N (r6.1), our method is 127 fps faster and 10.7% more accurate on AP. In addition, YOLOv7 has 51.4% AP at frame rate of 161 fps, while PPYOLOE-L with the same AP has only 78 fps frame rate. In terms of parameter usage, YOLOv7 is 41% less than PPYOLOE-L. From the results in the YOLO comparison table we know that the proposed method has the best speed-accuracy trade-off comprehensively. If we compare YOLOv7-tiny-SiLU with YOLOv5-N (r6.1), our method is 127 fps faster and 10.7% more accurate on AP. In addition, YOLOv7 has 51.4% AP at frame rate of 161 fps, while PPYOLOE-L with the same AP has only 78 fps frame rate. In terms of parameter usage, YOLOv7 is 41% less than PPYOLOE-L.
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script> <script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script> <script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv7"]'></canvas> <canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv7"]'></canvas>

@ -48,7 +48,7 @@ This table provides an overview of the YOLOv8 model variants, highlighting their
## Performance Metrics ## Performance Metrics
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script> <script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script> <script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv8"]'></canvas> <canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv8"]'></canvas>

@ -86,7 +86,7 @@ By benchmarking, you can ensure that your model not only performs well in contro
## Performance on MS COCO Dataset ## Performance on MS COCO Dataset
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script> <script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script> <script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv9"]'></canvas> <canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv9"]'></canvas>

@ -14,7 +14,7 @@ keywords: model benchmarking, YOLO11, Ultralytics, performance evaluation, expor
You may need to refresh the page to view the graphs correctly due to potential cookie issues. You may need to refresh the page to view the graphs correctly due to potential cookie issues.
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script> <script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script> <script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400"></canvas> <canvas id="modelComparisonChart" width="1024" height="400"></canvas>

Loading…
Cancel
Save