Use `chart.js@latest` (#19372)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
pull/19378/head
Glenn Jocher 3 weeks ago committed by GitHub
parent 54e632a719
commit 8c5f1b3426
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 2
      docs/en/models/rtdetr.md
  2. 2
      docs/en/models/yolo11.md
  3. 108
      docs/en/models/yolov10.md
  4. 2
      docs/en/models/yolov5.md
  5. 2
      docs/en/models/yolov6.md
  6. 2
      docs/en/models/yolov7.md
  7. 2
      docs/en/models/yolov8.md
  8. 2
      docs/en/models/yolov9.md
  9. 2
      docs/en/modes/benchmark.md

@ -36,7 +36,7 @@ The Ultralytics Python API provides pre-trained PaddlePaddle RT-DETR models with
- RT-DETR-L: 53.0% AP on COCO val2017, 114 FPS on T4 GPU
- RT-DETR-X: 54.8% AP on COCO val2017, 74 FPS on T4 GPU
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script>
<script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["RTDETRv2"]'></canvas>

@ -55,7 +55,7 @@ This table provides an overview of the YOLO11 model variants, showcasing their a
## Performance Metrics
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script>
<script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLO11"]'></canvas>

@ -44,30 +44,30 @@ The architecture of YOLOv10 builds upon the strengths of previous YOLO models wh
YOLOv10 comes in various model scales to cater to different application needs:
- **YOLOv10-N**: Nano version for extremely resource-constrained environments.
- **YOLOv10-S**: Small version balancing speed and accuracy.
- **YOLOv10-M**: Medium version for general-purpose use.
- **YOLOv10-B**: Balanced version with increased width for higher accuracy.
- **YOLOv10-L**: Large version for higher accuracy at the cost of increased computational resources.
- **YOLOv10-X**: Extra-large version for maximum accuracy and performance.
- **YOLOv10n**: Nano version for extremely resource-constrained environments.
- **YOLOv10s**: Small version balancing speed and accuracy.
- **YOLOv10m**: Medium version for general-purpose use.
- **YOLOv10b**: Balanced version with increased width for higher accuracy.
- **YOLOv10l**: Large version for higher accuracy at the cost of increased computational resources.
- **YOLOv10x**: Extra-large version for maximum accuracy and performance.
## Performance
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script>
<script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv10"]'></canvas>
YOLOv10 outperforms previous YOLO versions and other state-of-the-art models in terms of accuracy and efficiency. For example, YOLOv10-S is 1.8x faster than RT-DETR-R18 with similar AP on the COCO dataset, and YOLOv10-B has 46% less latency and 25% fewer parameters than YOLOv9-C with the same performance.
YOLOv10 outperforms previous YOLO versions and other state-of-the-art models in terms of accuracy and efficiency. For example, YOLOv10s is 1.8x faster than RT-DETR-R18 with similar AP on the COCO dataset, and YOLOv10b has 46% less latency and 25% fewer parameters than YOLOv9-C with the same performance.
| Model | Input Size | AP<sup>val</sup> | FLOPs (G) | Latency (ms) |
| -------------- | ---------- | ---------------- | --------- | ------------ |
| [YOLOv10-N][1] | 640 | 38.5 | **6.7** | **1.84** |
| [YOLOv10-S][2] | 640 | 46.3 | 21.6 | 2.49 |
| [YOLOv10-M][3] | 640 | 51.1 | 59.1 | 4.74 |
| [YOLOv10-B][4] | 640 | 52.5 | 92.0 | 5.74 |
| [YOLOv10-L][5] | 640 | 53.2 | 120.3 | 7.28 |
| [YOLOv10-X][6] | 640 | **54.4** | 160.4 | 10.70 |
| Model | Input Size | AP<sup>val</sup> | FLOPs (G) | Latency (ms) |
| ------------- | ---------- | ---------------- | --------- | ------------ |
| [YOLOv10n][1] | 640 | 38.5 | **6.7** | **1.84** |
| [YOLOv10s][2] | 640 | 46.3 | 21.6 | 2.49 |
| [YOLOv10m][3] | 640 | 51.1 | 59.1 | 4.74 |
| [YOLOv10b][4] | 640 | 52.5 | 92.0 | 5.74 |
| [YOLOv10l][5] | 640 | 53.2 | 120.3 | 7.28 |
| [YOLOv10x][6] | 640 | **54.4** | 160.4 | 10.70 |
Latency measured with TensorRT FP16 on T4 GPU.
@ -100,39 +100,39 @@ YOLOv10 has been extensively tested on standard benchmarks like COCO, demonstrat
Compared to other state-of-the-art detectors:
- YOLOv10-S / X are 1.8× / 1.3× faster than RT-DETR-R18 / R101 with similar accuracy
- YOLOv10-B has 25% fewer parameters and 46% lower latency than YOLOv9-C at same accuracy
- YOLOv10-L / X outperform YOLOv8-L / X by 0.3 AP / 0.5 AP with 1.8× / 2.3× fewer parameters
- YOLOv10s / x are 1.8× / 1.3× faster than RT-DETR-R18 / R101 with similar accuracy
- YOLOv10b has 25% fewer parameters and 46% lower latency than YOLOv9-C at same accuracy
- YOLOv10l / x outperform YOLOv8l / x by 0.3 AP / 0.5 AP with 1.8× / 2.3× fewer parameters
Here is a detailed comparison of YOLOv10 variants with other state-of-the-art models:
| Model | Params<br><sup>(M) | FLOPs<br><sup>(G) | mAP<sup>val<br>50-95 | Latency<br><sup>(ms) | Latency-forward<br><sup>(ms) |
| ------------------ | ------------------ | ----------------- | -------------------- | -------------------- | ---------------------------- |
| YOLOv6-3.0-N | 4.7 | 11.4 | 37.0 | 2.69 | **1.76** |
| Gold-YOLO-N | 5.6 | 12.1 | **39.6** | 2.92 | 1.82 |
| YOLOv8-N | 3.2 | 8.7 | 37.3 | 6.16 | 1.77 |
| **[YOLOv10-N][1]** | **2.3** | **6.7** | 39.5 | **1.84** | 1.79 |
| | | | | | |
| YOLOv6-3.0-S | 18.5 | 45.3 | 44.3 | 3.42 | 2.35 |
| Gold-YOLO-S | 21.5 | 46.0 | 45.4 | 3.82 | 2.73 |
| YOLOv8-S | 11.2 | 28.6 | 44.9 | 7.07 | **2.33** |
| **[YOLOv10-S][2]** | **7.2** | **21.6** | **46.8** | **2.49** | 2.39 |
| | | | | | |
| RT-DETR-R18 | 20.0 | 60.0 | 46.5 | **4.58** | **4.49** |
| YOLOv6-3.0-M | 34.9 | 85.8 | 49.1 | 5.63 | 4.56 |
| Gold-YOLO-M | 41.3 | 87.5 | 49.8 | 6.38 | 5.45 |
| YOLOv8-M | 25.9 | 78.9 | 50.6 | 9.50 | 5.09 |
| **[YOLOv10-M][3]** | **15.4** | **59.1** | **51.3** | 4.74 | 4.63 |
| | | | | | |
| YOLOv6-3.0-L | 59.6 | 150.7 | 51.8 | 9.02 | 7.90 |
| Gold-YOLO-L | 75.1 | 151.7 | 51.8 | 10.65 | 9.78 |
| YOLOv8-L | 43.7 | 165.2 | 52.9 | 12.39 | 8.06 |
| RT-DETR-R50 | 42.0 | 136.0 | 53.1 | 9.20 | 9.07 |
| **[YOLOv10-L][5]** | **24.4** | **120.3** | **53.4** | **7.28** | **7.21** |
| | | | | | |
| YOLOv8-X | 68.2 | 257.8 | 53.9 | 16.86 | 12.83 |
| RT-DETR-R101 | 76.0 | 259.0 | 54.3 | 13.71 | 13.58 |
| **[YOLOv10-X][6]** | **29.5** | **160.4** | **54.4** | **10.70** | **10.60** |
| Model | Params<br><sup>(M) | FLOPs<br><sup>(G) | mAP<sup>val<br>50-95 | Latency<br><sup>(ms) | Latency-forward<br><sup>(ms) |
| ----------------- | ------------------ | ----------------- | -------------------- | -------------------- | ---------------------------- |
| YOLOv6-3.0-N | 4.7 | 11.4 | 37.0 | 2.69 | **1.76** |
| Gold-YOLO-N | 5.6 | 12.1 | **39.6** | 2.92 | 1.82 |
| YOLOv8n | 3.2 | 8.7 | 37.3 | 6.16 | 1.77 |
| **[YOLOv10n][1]** | **2.3** | **6.7** | 39.5 | **1.84** | 1.79 |
| | | | | | |
| YOLOv6-3.0-S | 18.5 | 45.3 | 44.3 | 3.42 | 2.35 |
| Gold-YOLO-S | 21.5 | 46.0 | 45.4 | 3.82 | 2.73 |
| YOLOv8s | 11.2 | 28.6 | 44.9 | 7.07 | **2.33** |
| **[YOLOv10s][2]** | **7.2** | **21.6** | **46.8** | **2.49** | 2.39 |
| | | | | | |
| RT-DETR-R18 | 20.0 | 60.0 | 46.5 | **4.58** | **4.49** |
| YOLOv6-3.0-M | 34.9 | 85.8 | 49.1 | 5.63 | 4.56 |
| Gold-YOLO-M | 41.3 | 87.5 | 49.8 | 6.38 | 5.45 |
| YOLOv8m | 25.9 | 78.9 | 50.6 | 9.50 | 5.09 |
| **[YOLOv10m][3]** | **15.4** | **59.1** | **51.3** | 4.74 | 4.63 |
| | | | | | |
| YOLOv6-3.0-L | 59.6 | 150.7 | 51.8 | 9.02 | 7.90 |
| Gold-YOLO-L | 75.1 | 151.7 | 51.8 | 10.65 | 9.78 |
| YOLOv8l | 43.7 | 165.2 | 52.9 | 12.39 | 8.06 |
| RT-DETR-R50 | 42.0 | 136.0 | 53.1 | 9.20 | 9.07 |
| **[YOLOv10l][5]** | **24.4** | **120.3** | **53.4** | **7.28** | **7.21** |
| | | | | | |
| YOLOv8x | 68.2 | 257.8 | 53.9 | 16.86 | 12.83 |
| RT-DETR-R101 | 76.0 | 259.0 | 54.3 | 13.71 | 13.58 |
| **[YOLOv10x][6]** | **29.5** | **160.4** | **54.4** | **10.70** | **10.60** |
[1]: https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10n.pt
[2]: https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10s.pt
@ -264,7 +264,7 @@ For easy inference, you can use the Ultralytics YOLO Python library or the comma
```python
from ultralytics import YOLO
# Load the pre-trained YOLOv10-N model
# Load the pre-trained YOLOv10n model
model = YOLO("yolov10n.pt")
results = model("image.jpg")
results[0].show()
@ -282,12 +282,12 @@ For more usage examples, visit our [Usage Examples](#usage-examples) section.
YOLOv10 offers several model variants to cater to different use cases:
- **YOLOv10-N**: Suitable for extremely resource-constrained environments
- **YOLOv10-S**: Balances speed and accuracy
- **YOLOv10-M**: General-purpose use
- **YOLOv10-B**: Higher accuracy with increased width
- **YOLOv10-L**: High accuracy at the cost of computational resources
- **YOLOv10-X**: Maximum accuracy and performance
- **YOLOv10n**: Suitable for extremely resource-constrained environments
- **YOLOv10s**: Balances speed and accuracy
- **YOLOv10m**: General-purpose use
- **YOLOv10b**: Higher accuracy with increased width
- **YOLOv10l**: High accuracy at the cost of computational resources
- **YOLOv10x**: Maximum accuracy and performance
Each variant is designed for different computational needs and accuracy requirements, making them versatile for a variety of applications. Explore the [Model Variants](#model-variants) section for more information.
@ -301,4 +301,4 @@ YOLOv10 supports several export formats, including TorchScript, ONNX, OpenVINO,
### What are the performance benchmarks for YOLOv10 models?
YOLOv10 outperforms previous YOLO versions and other state-of-the-art models in both accuracy and efficiency. For example, YOLOv10-S is 1.8x faster than RT-DETR-R18 with a similar AP on the COCO dataset. YOLOv10-B shows 46% less latency and 25% fewer parameters than YOLOv9-C with the same performance. Detailed benchmarks can be found in the [Comparisons](#comparisons) section.
YOLOv10 outperforms previous YOLO versions and other state-of-the-art models in both accuracy and efficiency. For example, YOLOv10s is 1.8x faster than RT-DETR-R18 with a similar AP on the COCO dataset. YOLOv10b shows 46% less latency and 25% fewer parameters than YOLOv9-C with the same performance. Detailed benchmarks can be found in the [Comparisons](#comparisons) section.

@ -32,7 +32,7 @@ This table provides a detailed overview of the YOLOv5u model variants, highlight
## Performance Metrics
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script>
<script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv5"]'></canvas>

@ -22,7 +22,7 @@ keywords: Meituan YOLOv6, object detection, real-time applications, BiC module,
## Performance Metrics
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script>
<script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv6-3.0"]'></canvas>

@ -14,7 +14,7 @@ YOLOv7 is a state-of-the-art real-time object detector that surpasses all known
From the results in the YOLO comparison table we know that the proposed method has the best speed-accuracy trade-off comprehensively. If we compare YOLOv7-tiny-SiLU with YOLOv5-N (r6.1), our method is 127 fps faster and 10.7% more accurate on AP. In addition, YOLOv7 has 51.4% AP at frame rate of 161 fps, while PPYOLOE-L with the same AP has only 78 fps frame rate. In terms of parameter usage, YOLOv7 is 41% less than PPYOLOE-L.
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script>
<script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv7"]'></canvas>

@ -48,7 +48,7 @@ This table provides an overview of the YOLOv8 model variants, highlighting their
## Performance Metrics
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script>
<script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv8"]'></canvas>

@ -86,7 +86,7 @@ By benchmarking, you can ensure that your model not only performs well in contro
## Performance on MS COCO Dataset
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script>
<script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLOv9"]'></canvas>

@ -14,7 +14,7 @@ keywords: model benchmarking, YOLO11, Ultralytics, performance evaluation, expor
You may need to refresh the page to view the graphs correctly due to potential cookie issues.
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script>
<script async src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400"></canvas>

Loading…
Cancel
Save