|
|
|
@ -8,18 +8,17 @@ import matplotlib.pyplot as plt |
|
|
|
|
import numpy as np |
|
|
|
|
import torch |
|
|
|
|
from PIL import Image |
|
|
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
|
|
from ultralytics.utils import LOGGER |
|
|
|
|
from ultralytics.utils import TQDM_BAR_FORMAT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FastSAMPrompt: |
|
|
|
|
|
|
|
|
|
def __init__(self, img_path, results, device='cuda') -> None: |
|
|
|
|
# self.img_path = img_path |
|
|
|
|
def __init__(self, source, results, device='cuda') -> None: |
|
|
|
|
self.device = device |
|
|
|
|
self.results = results |
|
|
|
|
self.img_path = str(img_path) |
|
|
|
|
self.ori_img = cv2.imread(self.img_path) |
|
|
|
|
self.source = source |
|
|
|
|
|
|
|
|
|
# Import and assign clip |
|
|
|
|
try: |
|
|
|
@ -48,7 +47,7 @@ class FastSAMPrompt: |
|
|
|
|
@staticmethod |
|
|
|
|
def _format_results(result, filter=0): |
|
|
|
|
annotations = [] |
|
|
|
|
n = len(result.masks.data) |
|
|
|
|
n = len(result.masks.data) if result.masks is not None else 0 |
|
|
|
|
for i in range(n): |
|
|
|
|
mask = result.masks.data[i] == 1.0 |
|
|
|
|
if torch.sum(mask) >= filter: |
|
|
|
@ -86,69 +85,79 @@ class FastSAMPrompt: |
|
|
|
|
mask_random_color=True, |
|
|
|
|
better_quality=True, |
|
|
|
|
retina=False, |
|
|
|
|
with_countouers=True): |
|
|
|
|
if isinstance(annotations[0], dict): |
|
|
|
|
annotations = [annotation['segmentation'] for annotation in annotations] |
|
|
|
|
if isinstance(annotations, torch.Tensor): |
|
|
|
|
annotations = annotations.cpu().numpy() |
|
|
|
|
result_name = os.path.basename(self.img_path) |
|
|
|
|
image = self.ori_img |
|
|
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
|
original_h = image.shape[0] |
|
|
|
|
original_w = image.shape[1] |
|
|
|
|
# for macOS only |
|
|
|
|
# plt.switch_backend('TkAgg') |
|
|
|
|
fig = plt.figure(figsize=(original_w / 100, original_h / 100)) |
|
|
|
|
# Add subplot with no margin. |
|
|
|
|
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) |
|
|
|
|
plt.margins(0, 0) |
|
|
|
|
plt.gca().xaxis.set_major_locator(plt.NullLocator()) |
|
|
|
|
plt.gca().yaxis.set_major_locator(plt.NullLocator()) |
|
|
|
|
|
|
|
|
|
plt.imshow(image) |
|
|
|
|
if better_quality: |
|
|
|
|
for i, mask in enumerate(annotations): |
|
|
|
|
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) |
|
|
|
|
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) |
|
|
|
|
self.fast_show_mask( |
|
|
|
|
annotations, |
|
|
|
|
plt.gca(), |
|
|
|
|
random_color=mask_random_color, |
|
|
|
|
bbox=bbox, |
|
|
|
|
points=points, |
|
|
|
|
pointlabel=point_label, |
|
|
|
|
retinamask=retina, |
|
|
|
|
target_height=original_h, |
|
|
|
|
target_width=original_w, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
if with_countouers: |
|
|
|
|
contour_all = [] |
|
|
|
|
temp = np.zeros((original_h, original_w, 1)) |
|
|
|
|
for i, mask in enumerate(annotations): |
|
|
|
|
if isinstance(mask, dict): |
|
|
|
|
mask = mask['segmentation'] |
|
|
|
|
annotation = mask.astype(np.uint8) |
|
|
|
|
if not retina: |
|
|
|
|
annotation = cv2.resize( |
|
|
|
|
annotation, |
|
|
|
|
(original_w, original_h), |
|
|
|
|
interpolation=cv2.INTER_NEAREST, |
|
|
|
|
) |
|
|
|
|
contours, hierarchy = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
|
contour_all.extend(iter(contours)) |
|
|
|
|
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2) |
|
|
|
|
color = np.array([0 / 255, 0 / 255, 1.0, 0.8]) |
|
|
|
|
contour_mask = temp / 255 * color.reshape(1, 1, -1) |
|
|
|
|
plt.imshow(contour_mask) |
|
|
|
|
|
|
|
|
|
save_path = Path(output) / result_name |
|
|
|
|
save_path.parent.mkdir(exist_ok=True, parents=True) |
|
|
|
|
plt.axis('off') |
|
|
|
|
fig.savefig(save_path) |
|
|
|
|
LOGGER.info(f'Saved to {save_path.absolute()}') |
|
|
|
|
|
|
|
|
|
# CPU post process |
|
|
|
|
withContours=True): |
|
|
|
|
n = len(annotations) |
|
|
|
|
pbar = tqdm(annotations, total=n, bar_format=TQDM_BAR_FORMAT) |
|
|
|
|
for ann in pbar: |
|
|
|
|
result_name = os.path.basename(ann.path) |
|
|
|
|
image = ann.orig_img |
|
|
|
|
original_h, original_w = ann.orig_shape |
|
|
|
|
# for macOS only |
|
|
|
|
# plt.switch_backend('TkAgg') |
|
|
|
|
plt.figure(figsize=(original_w / 100, original_h / 100)) |
|
|
|
|
# Add subplot with no margin. |
|
|
|
|
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) |
|
|
|
|
plt.margins(0, 0) |
|
|
|
|
plt.gca().xaxis.set_major_locator(plt.NullLocator()) |
|
|
|
|
plt.gca().yaxis.set_major_locator(plt.NullLocator()) |
|
|
|
|
plt.imshow(image) |
|
|
|
|
|
|
|
|
|
if ann.masks is not None: |
|
|
|
|
masks = ann.masks.data |
|
|
|
|
if better_quality: |
|
|
|
|
if isinstance(masks[0], torch.Tensor): |
|
|
|
|
masks = np.array(masks.cpu()) |
|
|
|
|
for i, mask in enumerate(masks): |
|
|
|
|
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) |
|
|
|
|
masks[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) |
|
|
|
|
|
|
|
|
|
self.fast_show_mask( |
|
|
|
|
masks, |
|
|
|
|
plt.gca(), |
|
|
|
|
random_color=mask_random_color, |
|
|
|
|
bbox=bbox, |
|
|
|
|
points=points, |
|
|
|
|
pointlabel=point_label, |
|
|
|
|
retinamask=retina, |
|
|
|
|
target_height=original_h, |
|
|
|
|
target_width=original_w, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
if withContours: |
|
|
|
|
contour_all = [] |
|
|
|
|
temp = np.zeros((original_h, original_w, 1)) |
|
|
|
|
for i, mask in enumerate(masks): |
|
|
|
|
mask = mask.astype(np.uint8) |
|
|
|
|
if not retina: |
|
|
|
|
mask = cv2.resize( |
|
|
|
|
mask, |
|
|
|
|
(original_w, original_h), |
|
|
|
|
interpolation=cv2.INTER_NEAREST, |
|
|
|
|
) |
|
|
|
|
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
|
contour_all.extend(iter(contours)) |
|
|
|
|
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2) |
|
|
|
|
color = np.array([0 / 255, 0 / 255, 1.0, 0.8]) |
|
|
|
|
contour_mask = temp / 255 * color.reshape(1, 1, -1) |
|
|
|
|
plt.imshow(contour_mask) |
|
|
|
|
|
|
|
|
|
plt.axis('off') |
|
|
|
|
fig = plt.gcf() |
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
buf = fig.canvas.tostring_rgb() |
|
|
|
|
except AttributeError: |
|
|
|
|
fig.canvas.draw() |
|
|
|
|
buf = fig.canvas.tostring_rgb() |
|
|
|
|
cols, rows = fig.canvas.get_width_height() |
|
|
|
|
img_array = np.frombuffer(buf, dtype=np.uint8).reshape(rows, cols, 3) |
|
|
|
|
|
|
|
|
|
save_path = Path(output) / result_name |
|
|
|
|
save_path.parent.mkdir(exist_ok=True, parents=True) |
|
|
|
|
cv2.imwrite(str(save_path), img_array) |
|
|
|
|
plt.close() |
|
|
|
|
pbar.set_description('Saving {} to {}'.format(result_name, save_path)) |
|
|
|
|
|
|
|
|
|
@staticmethod |
|
|
|
|
def fast_show_mask( |
|
|
|
|
annotation, |
|
|
|
@ -215,8 +224,9 @@ class FastSAMPrompt: |
|
|
|
|
return probs[:, 0].softmax(dim=0) |
|
|
|
|
|
|
|
|
|
def _crop_image(self, format_results): |
|
|
|
|
|
|
|
|
|
image = Image.fromarray(cv2.cvtColor(self.ori_img, cv2.COLOR_BGR2RGB)) |
|
|
|
|
if os.path.isdir(self.source): |
|
|
|
|
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.") |
|
|
|
|
image = Image.fromarray(cv2.cvtColor(self.results[0].orig_img, cv2.COLOR_BGR2RGB)) |
|
|
|
|
ori_w, ori_h = image.size |
|
|
|
|
annotations = format_results |
|
|
|
|
mask_h, mask_w = annotations[0]['segmentation'].shape |
|
|
|
@ -237,65 +247,71 @@ class FastSAMPrompt: |
|
|
|
|
return cropped_boxes, cropped_images, not_crop, filter_id, annotations |
|
|
|
|
|
|
|
|
|
def box_prompt(self, bbox): |
|
|
|
|
|
|
|
|
|
assert (bbox[2] != 0 and bbox[3] != 0) |
|
|
|
|
masks = self.results[0].masks.data |
|
|
|
|
target_height = self.ori_img.shape[0] |
|
|
|
|
target_width = self.ori_img.shape[1] |
|
|
|
|
h = masks.shape[1] |
|
|
|
|
w = masks.shape[2] |
|
|
|
|
if h != target_height or w != target_width: |
|
|
|
|
bbox = [ |
|
|
|
|
int(bbox[0] * w / target_width), |
|
|
|
|
int(bbox[1] * h / target_height), |
|
|
|
|
int(bbox[2] * w / target_width), |
|
|
|
|
int(bbox[3] * h / target_height), ] |
|
|
|
|
bbox[0] = max(round(bbox[0]), 0) |
|
|
|
|
bbox[1] = max(round(bbox[1]), 0) |
|
|
|
|
bbox[2] = min(round(bbox[2]), w) |
|
|
|
|
bbox[3] = min(round(bbox[3]), h) |
|
|
|
|
|
|
|
|
|
# IoUs = torch.zeros(len(masks), dtype=torch.float32) |
|
|
|
|
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0]) |
|
|
|
|
|
|
|
|
|
masks_area = torch.sum(masks[:, bbox[1]:bbox[3], bbox[0]:bbox[2]], dim=(1, 2)) |
|
|
|
|
orig_masks_area = torch.sum(masks, dim=(1, 2)) |
|
|
|
|
|
|
|
|
|
union = bbox_area + orig_masks_area - masks_area |
|
|
|
|
IoUs = masks_area / union |
|
|
|
|
max_iou_index = torch.argmax(IoUs) |
|
|
|
|
|
|
|
|
|
return np.array([masks[max_iou_index].cpu().numpy()]) |
|
|
|
|
if self.results[0].masks is not None: |
|
|
|
|
assert (bbox[2] != 0 and bbox[3] != 0) |
|
|
|
|
if os.path.isdir(self.source): |
|
|
|
|
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.") |
|
|
|
|
masks = self.results[0].masks.data |
|
|
|
|
target_height, target_width = self.results[0].orig_shape |
|
|
|
|
h = masks.shape[1] |
|
|
|
|
w = masks.shape[2] |
|
|
|
|
if h != target_height or w != target_width: |
|
|
|
|
bbox = [ |
|
|
|
|
int(bbox[0] * w / target_width), |
|
|
|
|
int(bbox[1] * h / target_height), |
|
|
|
|
int(bbox[2] * w / target_width), |
|
|
|
|
int(bbox[3] * h / target_height), ] |
|
|
|
|
bbox[0] = max(round(bbox[0]), 0) |
|
|
|
|
bbox[1] = max(round(bbox[1]), 0) |
|
|
|
|
bbox[2] = min(round(bbox[2]), w) |
|
|
|
|
bbox[3] = min(round(bbox[3]), h) |
|
|
|
|
|
|
|
|
|
# IoUs = torch.zeros(len(masks), dtype=torch.float32) |
|
|
|
|
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0]) |
|
|
|
|
|
|
|
|
|
masks_area = torch.sum(masks[:, bbox[1]:bbox[3], bbox[0]:bbox[2]], dim=(1, 2)) |
|
|
|
|
orig_masks_area = torch.sum(masks, dim=(1, 2)) |
|
|
|
|
|
|
|
|
|
union = bbox_area + orig_masks_area - masks_area |
|
|
|
|
IoUs = masks_area / union |
|
|
|
|
max_iou_index = torch.argmax(IoUs) |
|
|
|
|
|
|
|
|
|
self.results[0].masks.data = torch.tensor(np.array([masks[max_iou_index].cpu().numpy()])) |
|
|
|
|
return self.results |
|
|
|
|
|
|
|
|
|
def point_prompt(self, points, pointlabel): # numpy 处理 |
|
|
|
|
|
|
|
|
|
masks = self._format_results(self.results[0], 0) |
|
|
|
|
target_height = self.ori_img.shape[0] |
|
|
|
|
target_width = self.ori_img.shape[1] |
|
|
|
|
h = masks[0]['segmentation'].shape[0] |
|
|
|
|
w = masks[0]['segmentation'].shape[1] |
|
|
|
|
if h != target_height or w != target_width: |
|
|
|
|
points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points] |
|
|
|
|
onemask = np.zeros((h, w)) |
|
|
|
|
for i, annotation in enumerate(masks): |
|
|
|
|
mask = annotation['segmentation'] if isinstance(annotation, dict) else annotation |
|
|
|
|
for i, point in enumerate(points): |
|
|
|
|
if mask[point[1], point[0]] == 1 and pointlabel[i] == 1: |
|
|
|
|
onemask += mask |
|
|
|
|
if mask[point[1], point[0]] == 1 and pointlabel[i] == 0: |
|
|
|
|
onemask -= mask |
|
|
|
|
onemask = onemask >= 1 |
|
|
|
|
return np.array([onemask]) |
|
|
|
|
if self.results[0].masks is not None: |
|
|
|
|
if os.path.isdir(self.source): |
|
|
|
|
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.") |
|
|
|
|
masks = self._format_results(self.results[0], 0) |
|
|
|
|
target_height, target_width = self.results[0].orig_shape |
|
|
|
|
h = masks[0]['segmentation'].shape[0] |
|
|
|
|
w = masks[0]['segmentation'].shape[1] |
|
|
|
|
if h != target_height or w != target_width: |
|
|
|
|
points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points] |
|
|
|
|
onemask = np.zeros((h, w)) |
|
|
|
|
for i, annotation in enumerate(masks): |
|
|
|
|
mask = annotation['segmentation'] if isinstance(annotation, dict) else annotation |
|
|
|
|
for i, point in enumerate(points): |
|
|
|
|
if mask[point[1], point[0]] == 1 and pointlabel[i] == 1: |
|
|
|
|
onemask += mask |
|
|
|
|
if mask[point[1], point[0]] == 1 and pointlabel[i] == 0: |
|
|
|
|
onemask -= mask |
|
|
|
|
onemask = onemask >= 1 |
|
|
|
|
self.results[0].masks.data = torch.tensor(np.array([onemask])) |
|
|
|
|
return self.results |
|
|
|
|
|
|
|
|
|
def text_prompt(self, text): |
|
|
|
|
format_results = self._format_results(self.results[0], 0) |
|
|
|
|
cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results) |
|
|
|
|
clip_model, preprocess = self.clip.load('ViT-B/32', device=self.device) |
|
|
|
|
scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device) |
|
|
|
|
max_idx = scores.argsort() |
|
|
|
|
max_idx = max_idx[-1] |
|
|
|
|
max_idx += sum(np.array(filter_id) <= int(max_idx)) |
|
|
|
|
return np.array([annotations[max_idx]['segmentation']]) |
|
|
|
|
if self.results[0].masks is not None: |
|
|
|
|
format_results = self._format_results(self.results[0], 0) |
|
|
|
|
cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results) |
|
|
|
|
clip_model, preprocess = self.clip.load('ViT-B/32', device=self.device) |
|
|
|
|
scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device) |
|
|
|
|
max_idx = scores.argsort() |
|
|
|
|
max_idx = max_idx[-1] |
|
|
|
|
max_idx += sum(np.array(filter_id) <= int(max_idx)) |
|
|
|
|
self.results[0].masks.data = torch.tensor(np.array([ann['segmentation'] for ann in annotations])) |
|
|
|
|
return self.results |
|
|
|
|
|
|
|
|
|
def everything_prompt(self): |
|
|
|
|
return self.results[0].masks.data |
|
|
|
|
return self.results |
|
|
|
|