`ultralytics 8.1.14` new YOLOv8-World models (#8054)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/8202/head v8.1.14
Laughing 1 year ago committed by GitHub
parent f9e9cdf2c3
commit 850ca8587f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 5
      docs/en/models/index.md
  2. 206
      docs/en/models/yolo-world.md
  3. 1
      docs/mkdocs_github_authors.yaml
  4. 1
      mkdocs.yml
  5. 5
      ultralytics/__init__.py
  6. 46
      ultralytics/cfg/models/v8/yolov8-world-t2i.yaml
  7. 48
      ultralytics/cfg/models/v8/yolov8-world.yaml
  8. 6
      ultralytics/engine/exporter.py
  9. 4
      ultralytics/models/__init__.py
  10. 2
      ultralytics/models/fastsam/prompt.py
  11. 4
      ultralytics/models/yolo/__init__.py
  12. 62
      ultralytics/models/yolo/model.py
  13. 11
      ultralytics/nn/modules/__init__.py
  14. 158
      ultralytics/nn/modules/block.py
  15. 45
      ultralytics/nn/modules/head.py
  16. 106
      ultralytics/nn/tasks.py
  17. 1
      ultralytics/utils/__init__.py
  18. 1
      ultralytics/utils/downloads.py
  19. 3
      ultralytics/utils/plotting.py

@ -1,7 +1,7 @@
---
comments: true
description: Explore the diverse range of YOLO family, SAM, MobileSAM, FastSAM, YOLO-NAS, and RT-DETR models supported by Ultralytics. Get started with examples for both CLI and Python usage.
keywords: Ultralytics, documentation, YOLO, SAM, MobileSAM, FastSAM, YOLO-NAS, RT-DETR, models, architectures, Python, CLI
description: Explore the diverse range of YOLO family, SAM, MobileSAM, FastSAM, YOLO-NAS, YOLO-World and RT-DETR models supported by Ultralytics. Get started with examples for both CLI and Python usage.
keywords: Ultralytics, documentation, YOLO, SAM, MobileSAM, FastSAM, YOLO-NAS, RT-DETR, YOLO-World, models, architectures, Python, CLI
---
# Models Supported by Ultralytics
@ -23,6 +23,7 @@ Here are some of the key models supported:
9. **[Fast Segment Anything Model (FastSAM)](fast-sam.md)**: FastSAM by Image & Video Analysis Group, Institute of Automation, Chinese Academy of Sciences.
10. **[YOLO-NAS](yolo-nas.md)**: YOLO Neural Architecture Search (NAS) Models.
11. **[Realtime Detection Transformers (RT-DETR)](rtdetr.md)**: Baidu's PaddlePaddle Realtime Detection Transformer (RT-DETR) models.
12. **[YOLO-World](yolo-world.md)**: Real-time Open Vocabulary Object Detection models from Tencent AI Lab.
<p align="center">
<br>

@ -0,0 +1,206 @@
---
comments: true
description: Discover YOLO-World, a YOLOv8-based framework for real-time open-vocabulary object detection in images. It enhances user interaction, boosts computational efficiency, and adapts across various vision tasks.
keywords: YOLO-World, YOLOv8, machine learning, CNN-based framework, object detection, real-time detection, Ultralytics, vision tasks, image processing, industrial applications, user interaction
---
# YOLO-World Model
The YOLO-World Model introduces an advanced, real-time [Ultralytics](https://ultralytics.com) [YOLOv8](yolov8.md)-based approach for Open-Vocabulary Detection tasks. This innovation enables the detection of any object within an image based on descriptive texts. By significantly lowering computational demands while preserving competitive performance, YOLO-World emerges as a versatile tool for numerous vision-based applications.
![YOLO-World Model architecture overview](https://github.com/ultralytics/ultralytics/assets/26833433/31105058-78c1-43ef-9573-4f41b06df531)
## Overview
YOLO-World tackles the challenges faced by traditional Open-Vocabulary detection models, which often rely on cumbersome Transformer models requiring extensive computational resources. These models' dependence on pre-defined object categories also restricts their utility in dynamic scenarios. YOLO-World revitalizes the YOLOv8 framework with open-vocabulary detection capabilities, employing vision-language modeling and pre-training on expansive datasets to excel at identifying a broad array of objects in zero-shot scenarios with unmatched efficiency.
## Key Features
1. **Real-time Solution:** Harnessing the computational speed of CNNs, YOLO-World delivers a swift open-vocabulary detection solution, catering to industries in need of immediate results.
2. **Efficiency and Performance:** YOLO-World slashes computational and resource requirements without sacrificing performance, offering a robust alternative to models like SAM but at a fraction of the computational cost, enabling real-time applications.
3. **Inference with Offline Vocabulary:** YOLO-World introduces a "prompt-then-detect" strategy, employing an offline vocabulary to enhance efficiency further. This approach enables the use of custom prompts computed apriori, including captions or categories, to be encoded and stored as offline vocabulary embeddings, streamlining the detection process.
4. **Powered by YOLOv8:** Built upon [Ultralytics YOLOv8](yolov8.md), YOLO-World leverages the latest advancements in real-time object detection to facilitate open-vocabulary detection with unparalleled accuracy and speed.
5. **Benchmark Excellence:** YOLO-World outperforms existing open-vocabulary detectors, including MDETR and GLIP series, in terms of speed and efficiency on standard benchmarks, showcasing YOLOv8's superior capability on a single NVIDIA V100 GPU.
6. **Versatile Applications:** YOLO-World's innovative approach unlocks new possibilities for a multitude of vision tasks, delivering speed improvements by orders of magnitude over existing methods.
## Available Models, Supported Tasks, and Operating Modes
This section details the models available with their specific pre-trained weights, the tasks they support, and their compatibility with various operating modes such as [Inference](../modes/predict.md), [Validation](../modes/val.md), [Training](../modes/train.md), and [Export](../modes/export.md), denoted by ✅ for supported modes and ❌ for unsupported modes.
!!! Note
All the YOLOv8-World weights have been directly migrated from the official [YOLO-World](https://github.com/AILab-CVC/YOLO-World) repository, highlighting their excellent contributions.
| Model Type | Pre-trained Weights | Tasks Supported | Inference | Validation | Training | Export |
|---------------|-----------------------------------------------------------------------------------------------------|----------------------------------------|-----------|------------|----------|--------|
| YOLOv8s-world | [yolov8s-world.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-world.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ❌ | ❌ |
| YOLOv8m-world | [yolov8m-world.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-world.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ❌ | ❌ |
| YOLOv8l-world | [yolov8l-world.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-world.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ❌ | ❌ |
## Zero-shot Transfer on COCO Dataset
| Model Type | mAP | mAP50 | mAP75 |
|---------------|------|-------|-------|
| yolov8s-world | 37.4 | 52.0 | 40.6 |
| yolov8m-world | 42.0 | 57.0 | 45.6 |
| yolov8l-world | 45.7 | 61.3 | 49.8 |
## Usage Examples
The YOLO-World models are easy to integrate into your Python applications. Ultralytics provides user-friendly Python API and CLI commands to streamline development.
### Predict Usage
Object detection is straightforward with the `predict` method, as illustrated below:
!!! Example
=== "Python"
```python
from ultralytics import YOLOWorld
# Initialize a YOLO-World model
model = YOLOWorld('yolov8s-world.pt') # or select yolov8m/l-world.pt for different sizes
# Execute inference with the YOLOv8s-world model on the specified image
results = model.predict('path/to/image.jpg')
# Show results
results[0].show()
```
=== "CLI"
```bash
# Perform object detection using a YOLO-World model
yolo predict model=yolov8s-world.pt source=path/to/image.jpg imgsz=640
```
This snippet demonstrates the simplicity of loading a pre-trained model and running a prediction on an image.
### Val Usage
Model validation on a dataset is streamlined as follows:
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Create a YOLO-World model
model = YOLO('yolov8s-world.pt') # or select yolov8m/l-world.pt for different sizes
# Conduct model validation on the COCO8 example dataset
metrics = model.val(data='coco8.yaml')
```
=== "CLI"
```bash
# Validate a YOLO-World model on the COCO8 dataset with a specified image size
yolo val model=yolov8s-world.pt data=coco8.yaml imgsz=640
```
!!! Note
The YOLO-World models provided by Ultralytics come pre-configured with [COCO dataset](../datasets/detect/coco) categories as part of their offline vocabulary, enhancing efficiency for immediate application. This integration allows the YOLOv8-World models to directly recognize and predict the 80 standard categories defined in the COCO dataset without requiring additional setup or customization.
### Set prompts
![YOLO-World prompt class names overview](https://github.com/ultralytics/ultralytics/assets/26833433/4f609ec0-ae6d-4a85-a034-c1c1c30968ff)
The YOLO-World framework allows for the dynamic specification of classes through custom prompts, empowering users to tailor the model to their specific needs **without retraining**. This feature is particularly useful for adapting the model to new domains or specific tasks that were not originally part of the training data. By setting custom prompts, users can essentially guide the model's focus towards objects of interest, enhancing the relevance and accuracy of the detection results.
For instance, if your application only requires detecting 'person' and 'bus' objects, you can specify these classes directly:
!!! Example
=== "Custom Inference Prompts"
```python
from ultralytics import YOLO
# Initialize a YOLO-World model
model = YOLO('yolov8s-world.pt') # or choose yolov8m/l-world.pt
# Define custom classes
model.set_classes(["person", "bus"])
# Execute prediction for specified categories on an image
results = model.predict('path/to/image.jpg')
# Show results
results[0].show()
```
You can also save a model after setting custom classes. By doing this you create a version of the YOLO-World model that is specialized for your specific use case. This process embeds your custom class definitions directly into the model file, making the model ready to use with your specified classes without further adjustments. Follow these steps to save and load your custom YOLOv8 model:
!!! Example
=== "Persisting Models with Custom Vocabulary"
First load a YOLO-World model, set custom classes for it and save it:
```python
from ultralytics import YOLO
# Initialize a YOLO-World model
model = YOLO('yolov8s-world.pt') # or select yolov8m/l-world.pt
# Define custom classes
model.set_classes(["person", "bus"])
# Save the model with the defined offline vocabulary
model.save("custom_yolov8s.pt")
```
After saving, the custom_yolov8s.pt model behaves like any other pre-trained YOLOv8 model but with a key difference: it is now optimized to detect only the classes you have defined. This customization can significantly improve detection performance and efficiency for your specific application scenarios.
```python
from ultralytics import YOLO
# Load your custom model
model = YOLO('custom_yolov8s.pt')
# Run inference to detect your custom classes
results = model.predict('path/to/image.jpg')
# Show results
results[0].show()
```
### Benefits of Saving with Custom Vocabulary
- **Efficiency**: Streamlines the detection process by focusing on relevant objects, reducing computational overhead and speeding up inference.
- **Flexibility**: Allows for easy adaptation of the model to new or niche detection tasks without the need for extensive retraining or data collection.
- **Simplicity**: Simplifies deployment by eliminating the need to repeatedly specify custom classes at runtime, making the model directly usable with its embedded vocabulary.
- **Performance**: Enhances detection accuracy for specified classes by focusing the model's attention and resources on recognizing the defined objects.
This approach provides a powerful means of customizing state-of-the-art object detection models for specific tasks, making advanced AI more accessible and applicable to a broader range of practical applications.
## Citations and Acknowledgements
We extend our gratitude to the [Tencent AILab Computer Vision Center](https://ai.tencent.com/) for their pioneering work in real-time open-vocabulary object detection with YOLO-World:
!!! Quote ""
=== "BibTeX"
```bibtex
@article{cheng2024yolow,
title={YOLO-World: Real-Time Open-Vocabulary Object Detection},
author={Cheng, Tianheng and Song, Lin and Ge, Yixiao and Liu, Wenyu and Wang, Xinggang and Shan, Ying},
journal={arXiv preprint arXiv:2401.17270},
year={2024}
}
```
For further reading, the original YOLO-World paper is available on [arXiv](https://arxiv.org/pdf/2401.17270v2.pdf). The project's source code and additional resources can be accessed via their [GitHub repository](https://github.com/AILab-CVC/YOLO-World). We appreciate their commitment to advancing the field and sharing their valuable insights with the community.

@ -1,3 +1,4 @@
1185102784@qq.com: Laughing-q
1579093407@qq.com: null
17216799+ouphi@users.noreply.github.com: ouphi
17316848+maianumerosky@users.noreply.github.com: maianumerosky

@ -226,6 +226,7 @@ nav:
- FastSAM (Fast Segment Anything Model): models/fast-sam.md
- YOLO-NAS (Neural Architecture Search): models/yolo-nas.md
- RT-DETR (Realtime Detection Transformer): models/rtdetr.md
- YOLO-World (Real-Time Open-Vocabulary Object Detection): models/yolo-world.md
- Datasets:
- datasets/index.md
- NEW 🚀 Explorer:

@ -1,9 +1,9 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.1.13"
__version__ = "8.1.14"
from ultralytics.data.explorer.explorer import Explorer
from ultralytics.models import RTDETR, SAM, YOLO
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld
from ultralytics.models.fastsam import FastSAM
from ultralytics.models.nas import NAS
from ultralytics.utils import ASSETS, SETTINGS as settings
@ -14,6 +14,7 @@ __all__ = (
"__version__",
"ASSETS",
"YOLO",
"YOLOWorld",
"NAS",
"SAM",
"FastSAM",

@ -0,0 +1,46 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C2fAttn, [512, 256, 8]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C2fAttn, [256, 128, 4]] # 15 (P3/8-small)
- [15, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 2, C2fAttn, [512, 256, 8]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 2, C2fAttn, [1024, 512, 16]] # 21 (P5/32-large)
- [[15, 18, 21], 1, WorldDetect, [nc, 512, True]] # Detect(P3, P4, P5)

@ -0,0 +1,48 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2fAttn, [512, 256, 8]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2fAttn, [256, 128, 4]] # 15 (P3/8-small)
- [[15, 12, 9], 1, ImagePoolingAttn, [256]] # 16 (P3/8-small)
- [15, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2fAttn, [512, 256, 8]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2fAttn, [1024, 512, 16]] # 22 (P5/32-large)
- [[15, 19, 22], 1, WorldDetect, [nc, 512, False]] # Detect(P3, P4, P5)

@ -216,7 +216,7 @@ class Exporter:
model.float()
model = model.fuse()
for m in model.modules():
if isinstance(m, (Detect, RTDETRDecoder)): # Segment and Pose use Detect base class
if isinstance(m, (Detect, RTDETRDecoder)): # includes all Detect subclasses like Segment, Pose, OBB
m.dynamic = self.args.dynamic
m.export = True
m.format = self.args.format
@ -455,8 +455,8 @@ class Exporter:
LOGGER.warning(f"{prefix} WARNING ⚠ >300 images recommended for INT8 calibration, found {n} images.")
quantization_dataset = nncf.Dataset(dataset, transform_fn)
ignored_scope = None
if isinstance(self.model.model[-1], (Detect, RTDETRDecoder)): # Segment and Pose use Detect base class
# get detection module name in onnx
if isinstance(self.model.model[-1], (Detect, RTDETRDecoder)):
# Includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
head_module_name = ".".join(list(self.model.named_modules())[-1][0].split(".")[:2])
ignored_scope = nncf.IgnoredScope( # ignore operations

@ -2,6 +2,6 @@
from .rtdetr import RTDETR
from .sam import SAM
from .yolo import YOLO
from .yolo import YOLO, YOLOWorld
__all__ = "YOLO", "RTDETR", "SAM" # allow simpler import
__all__ = "YOLO", "RTDETR", "SAM", "YOLOWorld" # allow simpler import

@ -31,7 +31,7 @@ class FastSAMPrompt:
# Import and assign clip
try:
import clip # for linear_assignment
import clip
except ImportError:
from ultralytics.utils.checks import check_requirements

@ -2,6 +2,6 @@
from ultralytics.models.yolo import classify, detect, obb, pose, segment
from .model import YOLO
from .model import YOLO, YOLOWorld
__all__ = "classify", "segment", "detect", "pose", "obb", "YOLO"
__all__ = "classify", "segment", "detect", "pose", "obb", "YOLO", "YOLOWorld"

@ -1,13 +1,27 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from pathlib import Path
from ultralytics.engine.model import Model
from ultralytics.models import yolo
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, OBBModel, PoseModel, SegmentationModel
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, OBBModel, PoseModel, SegmentationModel, WorldModel
from ultralytics.utils import yaml_load, ROOT
class YOLO(Model):
"""YOLO (You Only Look Once) object detection model."""
def __init__(self, model="yolov8n.pt", task=None, verbose=False):
"""Initialize YOLO model, switching to YOLOWorld if model filename contains '-world'."""
stem = Path(model).stem # filename stem without suffix, i.e. "yolov8n"
if "-world" in stem:
new_instance = YOLOWorld(model)
self.__class__ = type(new_instance)
self.__dict__ = new_instance.__dict__
else:
# Continue with default YOLO initialization
super().__init__(model=model, task=task, verbose=verbose)
@property
def task_map(self):
"""Map head to model, trainer, validator, and predictor classes."""
@ -43,3 +57,49 @@ class YOLO(Model):
"predictor": yolo.obb.OBBPredictor,
},
}
class YOLOWorld(Model):
"""YOLO-World object detection model."""
def __init__(self, model="yolov8s-world.pt") -> None:
"""
Initializes the YOLOv8-World model with the given pre-trained model file. Supports *.pt and *.yaml formats.
Args:
model (str): Path to the pre-trained model. Defaults to 'yolov8s-world.pt'.
"""
super().__init__(model=model, task="detect")
# Assign default COCO class names
self.model.names = yaml_load(ROOT / "cfg/datasets/coco8.yaml").get("names")
@property
def task_map(self):
"""Map head to model, validator, and predictor classes."""
return {
"detect": {
"model": WorldModel,
"validator": yolo.detect.DetectionValidator,
"predictor": yolo.detect.DetectionPredictor,
}
}
def set_classes(self, classes):
"""
Set classes.
Args:
classes (List(str)): A list of categories i.e ["person"].
"""
self.model.set_classes(classes)
# Remove background if it's given
background = " "
if background in classes:
classes.remove(background)
self.model.names = classes
# Reset method class names
# self.predictor = None # reset predictor otherwise old names remain
if self.predictor:
self.predictor.model.names = classes

@ -28,6 +28,8 @@ from .block import (
Bottleneck,
BottleneckCSP,
C2f,
C2fAttn,
ImagePoolingAttn,
C3Ghost,
C3x,
GhostBottleneck,
@ -36,6 +38,8 @@ from .block import (
Proto,
RepC3,
ResNetLayer,
ContrastiveHead,
BNContrastiveHead,
)
from .conv import (
CBAM,
@ -52,7 +56,7 @@ from .conv import (
RepConv,
SpatialAttention,
)
from .head import OBB, Classify, Detect, Pose, RTDETRDecoder, Segment
from .head import OBB, Classify, Detect, Pose, RTDETRDecoder, Segment, WorldDetect
from .transformer import (
AIFI,
MLP,
@ -93,6 +97,7 @@ __all__ = (
"C2",
"C3",
"C2f",
"C2fAttn",
"C3x",
"C3TR",
"C3Ghost",
@ -114,4 +119,8 @@ __all__ = (
"MLP",
"ResNetLayer",
"OBB",
"WorldDetect",
"ImagePoolingAttn",
"ContrastiveHead",
"BNContrastiveHead",
)

@ -18,6 +18,10 @@ __all__ = (
"C2",
"C3",
"C2f",
"C2fAttn",
"ImagePoolingAttn",
"ContrastiveHead",
"BNContrastiveHead",
"C3x",
"C3TR",
"C3Ghost",
@ -390,3 +394,157 @@ class ResNetLayer(nn.Module):
def forward(self, x):
"""Forward pass through the ResNet layer."""
return self.layer(x)
class MaxSigmoidAttnBlock(nn.Module):
"""Max Sigmoid attention block."""
def __init__(self, c1, c2, nh=1, ec=128, gc=512, scale=False):
"""Initializes MaxSigmoidAttnBlock with specified arguments."""
super().__init__()
self.nh = nh
self.hc = c2 // nh
self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
self.gl = nn.Linear(gc, ec)
self.bias = nn.Parameter(torch.zeros(nh))
self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0
def forward(self, x, guide):
"""Forward process."""
bs, _, h, w = x.shape
guide = self.gl(guide)
guide = guide.view(bs, -1, self.nh, self.hc)
embed = self.ec(x) if self.ec is not None else x
embed = embed.view(bs, self.nh, self.hc, h, w)
aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
aw = aw.max(dim=-1)[0]
aw = aw / (self.hc**0.5)
aw = aw + self.bias[None, :, None, None]
aw = aw.sigmoid() * self.scale
x = self.proj_conv(x)
x = x.view(bs, self.nh, -1, h, w)
x = x * aw.unsqueeze(2)
return x.view(bs, -1, h, w)
class C2fAttn(nn.Module):
"""C2f module with an additional attn module."""
def __init__(self, c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5):
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
expansion.
"""
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((3 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)
def forward(self, x, guide):
"""Forward pass through C2f layer."""
y = list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.m)
y.append(self.attn(y[-1], guide))
return self.cv2(torch.cat(y, 1))
def forward_split(self, x, guide):
"""Forward pass using split() instead of chunk()."""
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in self.m)
y.append(self.attn(y[-1], guide))
return self.cv2(torch.cat(y, 1))
class ImagePoolingAttn(nn.Module):
"""ImagePoolingAttn: Enhance the text embeddings with image-aware information."""
def __init__(self, ec=256, ch=(), ct=512, nh=8, k=3, scale=False):
"""Initializes ImagePoolingAttn with specified arguments."""
super().__init__()
nf = len(ch)
self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
self.proj = nn.Linear(ec, ct)
self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
self.ec = ec
self.nh = nh
self.nf = nf
self.hc = ec // nh
self.k = k
def forward(self, x, text):
"""Executes attention mechanism on input tensor x and guide tensor."""
bs = x[0].shape[0]
assert len(x) == self.nf
num_patches = self.k**2
x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
x = torch.cat(x, dim=-1).transpose(1, 2)
q = self.query(text)
k = self.key(x)
v = self.value(x)
# q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1)
q = q.reshape(bs, -1, self.nh, self.hc)
k = k.reshape(bs, -1, self.nh, self.hc)
v = v.reshape(bs, -1, self.nh, self.hc)
aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
aw = aw / (self.hc**0.5)
aw = F.softmax(aw, dim=-1)
x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
x = self.proj(x.reshape(bs, -1, self.ec))
return x * self.scale + text
class ContrastiveHead(nn.Module):
"""Contrastive Head for YOLO-World compute the region-text scores according to the similarity between image and text
features.
"""
def __init__(self):
"""Initializes ContrastiveHead with specified region-text similarity parameters."""
super().__init__()
self.bias = nn.Parameter(torch.zeros([]))
self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())
def forward(self, x, w):
"""Forward function of contrastive learning."""
x = F.normalize(x, dim=1, p=2)
w = F.normalize(w, dim=-1, p=2)
x = torch.einsum("bchw,bkc->bkhw", x, w)
return x * self.logit_scale.exp() + self.bias
class BNContrastiveHead(nn.Module):
"""
Batch Norm Contrastive Head for YOLO-World using batch norm instead of l2-normalization.
Args:
embed_dims (int): Embed dimensions of text and image features.
norm_cfg (dict): Normalization parameters.
"""
def __init__(self, embed_dims: int):
"""Initialize ContrastiveHead with region-text similarity parameters."""
super().__init__()
self.norm = nn.BatchNorm2d(embed_dims)
self.bias = nn.Parameter(torch.zeros([]))
# use -1.0 is more stable
self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))
def forward(self, x, w):
"""Forward function of contrastive learning."""
x = self.norm(x)
w = F.normalize(w, dim=-1, p=2)
x = torch.einsum("bchw,bkc->bkhw", x, w)
return x * self.logit_scale.exp() + self.bias

@ -8,7 +8,7 @@ import torch.nn as nn
from torch.nn.init import constant_, xavier_uniform_
from ultralytics.utils.tal import TORCH_1_10, dist2bbox, dist2rbox, make_anchors
from .block import DFL, Proto
from .block import DFL, Proto, ContrastiveHead, BNContrastiveHead
from .conv import Conv
from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
from .utils import bias_init_with_prob, linear_init
@ -208,6 +208,49 @@ class Classify(nn.Module):
return x if self.training else x.softmax(1)
class WorldDetect(Detect):
def __init__(self, nc=80, embed=512, with_bn=False, ch=()):
"""Initialize YOLOv8 detection layer with nc classes and layer channels ch."""
super().__init__(nc, ch)
c3 = max(ch[0], min(self.nc, 100))
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)
def forward(self, x, text):
"""Concatenates and returns predicted bounding boxes and class probabilities."""
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
if self.training:
return x
# Inference path
shape = x[0].shape # BCHW
x_cat = torch.cat([xi.view(shape[0], self.nc + self.reg_max * 4, -1) for xi in x], 2)
if self.dynamic or self.shape != shape:
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
self.shape = shape
if self.export and self.format in ("saved_model", "pb", "tflite", "edgetpu", "tfjs"): # avoid TF FlexSplitV ops
box = x_cat[:, : self.reg_max * 4]
cls = x_cat[:, self.reg_max * 4 :]
else:
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
if self.export and self.format in ("tflite", "edgetpu"):
# Precompute normalization factor to increase numerical stability
# See https://github.com/ultralytics/ultralytics/issues/7371
grid_h = shape[2]
grid_w = shape[3]
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
norm = self.strides / (self.stride[0] * grid_size)
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
else:
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
y = torch.cat((dbox, cls.sigmoid()), 1)
return y if self.export else (y, x)
class RTDETRDecoder(nn.Module):
"""
Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection.

@ -19,6 +19,8 @@ from ultralytics.nn.modules import (
Bottleneck,
BottleneckCSP,
C2f,
C2fAttn,
ImagePoolingAttn,
C3Ghost,
C3x,
Classify,
@ -40,6 +42,7 @@ from ultralytics.nn.modules import (
ResNetLayer,
RTDETRDecoder,
Segment,
WorldDetect,
)
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml
@ -222,7 +225,7 @@ class BaseModel(nn.Module):
"""
self = super()._apply(fn)
m = self.model[-1] # Detect()
if isinstance(m, (Detect, Segment)):
if isinstance(m, Detect): # includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
m.stride = fn(m.stride)
m.anchors = fn(m.anchors)
m.strides = fn(m.strides)
@ -281,7 +284,7 @@ class DetectionModel(BaseModel):
# Build strides
m = self.model[-1] # Detect()
if isinstance(m, (Detect, Segment, Pose, OBB)):
if isinstance(m, Detect): # includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
s = 256 # 2x min stride
m.inplace = self.inplace
forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose, OBB)) else self.forward(x)
@ -546,6 +549,77 @@ class RTDETRDetectionModel(DetectionModel):
return x
class WorldModel(DetectionModel):
"""YOLOv8 World Model."""
def __init__(self, cfg="yolov8s-world.yaml", ch=3, nc=None, verbose=True):
"""Initialize YOLOv8 world model with given config and parameters."""
self.txt_feats = torch.randn(1, nc or 80, 512) # placeholder
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
def set_classes(self, text):
"""Perform a forward pass with optional profiling, visualization, and embedding extraction."""
try:
import clip
except ImportError:
check_requirements("git+https://github.com/openai/CLIP.git")
import clip
model, _ = clip.load("ViT-B/32")
device = next(model.parameters()).device
text_token = clip.tokenize(text).to(device)
txt_feats = model.encode_text(text_token).to(dtype=torch.float32)
txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)
self.txt_feats = txt_feats.reshape(-1, len(text), txt_feats.shape[-1])
self.model[-1].nc = len(text)
def init_criterion(self):
"""Initialize the loss criterion for the model."""
raise NotImplementedError
def predict(self, x, profile=False, visualize=False, augment=False, embed=None):
"""
Perform a forward pass through the model.
Args:
x (torch.Tensor): The input tensor.
profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
embed (list, optional): A list of feature vectors/embeddings to return.
Returns:
(torch.Tensor): Model's output tensor.
"""
txt_feats = self.txt_feats.to(device=x.device, dtype=x.dtype)
if len(txt_feats) != len(x):
txt_feats = txt_feats.repeat(len(x), 1, 1)
ori_txt_feats = txt_feats.clone()
y, dt, embeddings = [], [], [] # outputs
for m in self.model: # except the head part
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
if isinstance(m, C2fAttn):
x = m(x, txt_feats)
elif isinstance(m, WorldDetect):
x = m(x, ori_txt_feats)
elif isinstance(m, ImagePoolingAttn):
txt_feats = m(x, txt_feats)
else:
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
if embed and m.i in embed:
embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
if m.i == max(embed):
return torch.unbind(torch.cat(embeddings, 1), dim=0)
return x
class Ensemble(nn.ModuleList):
"""Ensemble of models."""
@ -685,11 +759,8 @@ def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
# Module updates
for m in ensemble.modules():
t = type(m)
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment, Pose, OBB):
if hasattr(m, "inplace"):
m.inplace = inplace
elif t is nn.Upsample and not hasattr(m, "recompute_scale_factor"):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
# Return model
if len(ensemble) == 1:
@ -699,7 +770,7 @@ def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
LOGGER.info(f"Ensemble created with {weights}\n")
for k in "names", "nc", "yaml":
setattr(ensemble, k, getattr(ensemble[0], k))
ensemble.stride = ensemble[torch.argmax(torch.tensor([m.stride.max() for m in ensemble])).int()].stride
ensemble.stride = ensemble[int(torch.argmax(torch.tensor([m.stride.max() for m in ensemble])))].stride
assert all(ensemble[0].nc == m.nc for m in ensemble), f"Models differ in class counts {[m.nc for m in ensemble]}"
return ensemble
@ -721,11 +792,8 @@ def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
# Module updates
for m in model.modules():
t = type(m)
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment, Pose, OBB):
if hasattr(m, "inplace"):
m.inplace = inplace
elif t is nn.Upsample and not hasattr(m, "recompute_scale_factor"):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
# Return model and ckpt
return model, ckpt
@ -778,6 +846,7 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
C1,
C2,
C2f,
C2fAttn,
C3,
C3TR,
C3Ghost,
@ -789,9 +858,14 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
c1, c2 = ch[f], args[0]
if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)
c2 = make_divisible(min(c2, max_channels) * width, 8)
if m is C2fAttn:
args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8) # embed channels
args[2] = int(
max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2]
) # num heads
args = [c1, c2, *args[1:]]
if m in (BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x, RepC3):
if m in (BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3):
args.insert(2, n) # number of repeats
n = 1
elif m is AIFI:
@ -808,7 +882,7 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
args = [ch[f]]
elif m is Concat:
c2 = sum(ch[x] for x in f)
elif m in (Detect, Segment, Pose, OBB):
elif m in (Detect, WorldDetect, Segment, Pose, OBB, ImagePoolingAttn):
args.append([ch[x] for x in f])
if m is Segment:
args[2] = make_divisible(min(args[2], max_channels) * width, 8)
@ -911,9 +985,7 @@ def guess_model_task(model):
return cfg2task(eval(x))
for m in model.modules():
if isinstance(m, Detect):
return "detect"
elif isinstance(m, Segment):
if isinstance(m, Segment):
return "segment"
elif isinstance(m, Classify):
return "classify"
@ -921,6 +993,8 @@ def guess_model_task(model):
return "pose"
elif isinstance(m, OBB):
return "obb"
elif isinstance(m, (Detect, WorldDetect)):
return "detect"
# Guess from model filename
if isinstance(model, (str, Path)):

@ -783,6 +783,7 @@ class Retry(contextlib.ContextDecorator):
"""Decorator implementation for Retry with exponential backoff."""
def wrapped_func(*args, **kwargs):
"""Applies retries to the decorated function or method."""
self._attempts = 0
while self._attempts < self.times:
try:

@ -20,6 +20,7 @@ GITHUB_ASSETS_NAMES = (
[f"yolov8{k}{suffix}.pt" for k in "nsmlx" for suffix in ("", "-cls", "-seg", "-pose", "-obb")]
+ [f"yolov5{k}{resolution}u.pt" for k in "nsmlx" for resolution in ("", "6")]
+ [f"yolov3{k}u.pt" for k in ("", "-spp", "-tiny")]
+ [f"yolov8{k}-world.pt" for k in "sml"]
+ [f"yolo_nas_{k}.pt" for k in "sml"]
+ [f"sam_{k}.pt" for k in "bl"]
+ [f"FastSAM-{k}.pt" for k in "sx"]

@ -250,7 +250,8 @@ class Annotator:
kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
for human pose. Default is True.
Note: `kpt_line=True` currently only supports human pose plotting.
Note:
`kpt_line=True` currently only supports human pose plotting.
"""
if self.pil:
# Convert to numpy first

Loading…
Cancel
Save