Merge branch 'main' into replace-thop

replace-thop
Ultralytics Assistant 3 weeks ago committed by GitHub
commit 7b9e528ac4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 7
      .github/workflows/ci.yaml
  2. 11
      .github/workflows/docker.yaml
  3. 2
      .github/workflows/docs.yml
  4. 2
      .github/workflows/publish.yml
  5. 4
      .github/workflows/stale.yml
  6. 1
      .gitignore
  7. 6
      README.md
  8. 6
      README.zh-CN.md
  9. 34
      docker/Dockerfile-jupyter
  10. 16
      docs/en/guides/analytics.md
  11. 15
      docs/en/guides/heatmaps.md
  12. 1
      docs/en/guides/kfold-cross-validation.md
  13. 35
      docs/en/guides/model-deployment-options.md
  14. 216
      docs/en/guides/nvidia-jetson.md
  15. 15
      docs/en/guides/object-counting.md
  16. 15
      docs/en/guides/queue-management.md
  17. 15
      docs/en/guides/speed-estimation.md
  18. 39
      docs/en/guides/triton-inference-server.md
  19. 15
      docs/en/guides/workouts-monitoring.md
  20. 21
      docs/en/index.md
  21. 160
      docs/en/integrations/albumentations.md
  22. 8
      docs/en/integrations/index.md
  23. 342
      docs/en/integrations/mnn.md
  24. 1
      docs/en/macros/export-table.md
  25. 2
      docs/en/macros/train-args.md
  26. 9
      docs/en/models/sam-2.md
  27. 9
      docs/en/models/sam.md
  28. 8
      docs/en/models/yolo11.md
  29. 8
      docs/en/models/yolov5.md
  30. 8
      docs/en/models/yolov8.md
  31. 22
      docs/en/modes/benchmark.md
  32. 18
      docs/en/modes/train.md
  33. 4
      docs/en/reference/cfg/__init__.md
  34. 44
      docs/en/solutions/index.md
  35. 23
      docs/mkdocs_github_authors.yaml
  36. 91
      docs/overrides/javascript/extra.js
  37. 5
      examples/README.md
  38. 12
      examples/YOLO-Series-ONNXRuntime-Rust/Cargo.toml
  39. 94
      examples/YOLO-Series-ONNXRuntime-Rust/README.md
  40. 236
      examples/YOLO-Series-ONNXRuntime-Rust/src/main.rs
  41. 11
      examples/YOLOv8-ONNXRuntime-Rust/Cargo.toml
  42. 29
      examples/YOLOv8-ONNXRuntime-Rust/README.md
  43. 2
      examples/YOLOv8-ONNXRuntime-Rust/src/cli.rs
  44. 41
      examples/YOLOv8-ONNXRuntime-Rust/src/lib.rs
  45. 2
      examples/YOLOv8-ONNXRuntime-Rust/src/main.rs
  46. 29
      examples/YOLOv8-ONNXRuntime-Rust/src/model.rs
  47. 183
      examples/YOLOv8-ONNXRuntime-Rust/src/ort_backend.rs
  48. 65
      examples/YOLOv8-OpenCV-int8-tflite-Python/README.md
  49. 308
      examples/YOLOv8-OpenCV-int8-tflite-Python/main.py
  50. 55
      examples/YOLOv8-TFLite-Python/README.md
  51. 221
      examples/YOLOv8-TFLite-Python/main.py
  52. 2
      examples/heatmaps.ipynb
  53. 2
      examples/object_counting.ipynb
  54. 2
      examples/object_tracking.ipynb
  55. 4
      mkdocs.yml
  56. 8
      tests/test_exports.py
  57. 2
      ultralytics/__init__.py
  58. 146
      ultralytics/cfg/__init__.py
  59. 2
      ultralytics/cfg/default.yaml
  60. 4
      ultralytics/cfg/trackers/botsort.yaml
  61. 4
      ultralytics/cfg/trackers/bytetrack.yaml
  62. 22
      ultralytics/data/annotator.py
  63. 50
      ultralytics/engine/exporter.py
  64. 1
      ultralytics/engine/predictor.py
  65. 9
      ultralytics/engine/trainer.py
  66. 1
      ultralytics/engine/validator.py
  67. 1
      ultralytics/models/sam/modules/sam.py
  68. 2
      ultralytics/models/sam/predict.py
  69. 104
      ultralytics/nn/autobackend.py
  70. 18
      ultralytics/nn/modules/head.py
  71. 6
      ultralytics/solutions/ai_gym.py
  72. 23
      ultralytics/solutions/solutions.py
  73. 1
      ultralytics/utils/__init__.py
  74. 11
      ultralytics/utils/benchmarks.py
  75. 8
      ultralytics/utils/checks.py
  76. 2
      ultralytics/utils/instance.py
  77. 11
      ultralytics/utils/tuner.py

@ -184,7 +184,7 @@ jobs:
torch="torch==1.8.0 torchvision==0.9.0"
fi
if [[ "${{ github.event_name }}" =~ ^(schedule|workflow_dispatch)$ ]]; then
slow="pycocotools mlflow ray[tune]"
slow="pycocotools mlflow"
fi
pip install -e ".[export]" $torch $slow pytest-cov --extra-index-url https://download.pytorch.org/whl/cpu
- name: Check environment
@ -247,7 +247,7 @@ jobs:
- name: Install requirements
run: |
python -m pip install --upgrade pip wheel
pip install -e ".[export]" pytest mlflow pycocotools "ray[tune]"
pip install -e ".[export]" pytest mlflow pycocotools
- name: Check environment
run: |
yolo checks
@ -325,6 +325,7 @@ jobs:
yolo train model=yolo11n.pt data=coco8.yaml epochs=1 imgsz=32
yolo val model=yolo11n.pt data=coco8.yaml imgsz=32
yolo export model=yolo11n.pt format=torchscript imgsz=160
yolo solutions
- name: Test Python
# Note this step must use the updated default bash environment, not a python environment
run: |
@ -351,7 +352,7 @@ jobs:
if: always() # This ensures the job runs even if previous jobs fail
steps:
- name: Check for failure and notify
if: (needs.HUB.result == 'failure' || needs.Benchmarks.result == 'failure' || needs.Tests.result == 'failure' || needs.GPU.result == 'failure' || needs.RaspberryPi.result == 'failure' || needs.Conda.result == 'failure' ) && github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule' || github.event_name == 'push')
if: (needs.HUB.result == 'failure' || needs.Benchmarks.result == 'failure' || needs.Tests.result == 'failure' || needs.GPU.result == 'failure' || needs.RaspberryPi.result == 'failure' || needs.Conda.result == 'failure' ) && github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule' || github.event_name == 'push') && github.run_attempt == '1'
uses: slackapi/slack-github-action@v1.27.0
with:
payload: |

@ -170,6 +170,15 @@ jobs:
docker build -f docker/Dockerfile-runner -t $t .
docker push $t
fi
if [[ "${{ matrix.tags }}" == "latest-python" ]]; then
t=ultralytics/ultralytics:latest-jupyter
v=ultralytics/ultralytics:${{ steps.get_version.outputs.version_tag }}-jupyter
docker build -f docker/Dockerfile-jupyter -t $t -t $v .
docker push $t
if [[ "${{ steps.check_tag.outputs.new_release }}" == "true" ]]; then
docker push $v
fi
fi
trigger-actions:
runs-on: ubuntu-latest
@ -192,7 +201,7 @@ jobs:
if: always()
steps:
- name: Check for failure and notify
if: needs.docker.result == 'failure' && github.repository == 'ultralytics/ultralytics' && github.event_name == 'push'
if: needs.docker.result == 'failure' && github.repository == 'ultralytics/ultralytics' && github.event_name == 'push' && github.run_attempt == '1'
uses: slackapi/slack-github-action@v1.27.0
with:
payload: |

@ -39,7 +39,7 @@ jobs:
uses: actions/checkout@v4
with:
repository: ${{ github.event.pull_request.head.repo.full_name || github.repository }}
token: ${{ secrets.GITHUB_TOKEN }}
token: ${{ secrets._GITHUB_TOKEN }}
ref: ${{ github.head_ref || github.ref }}
fetch-depth: 0
- name: Set up Python

@ -92,7 +92,7 @@ jobs:
uses: slackapi/slack-github-action@v1.27.0
with:
payload: |
{"text": "<!channel> GitHub Actions success for ${{ github.workflow }} ✅\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* NEW '${{ github.repository }} ${{ steps.check_pypi.outputs.current_tag }}' pip package published 😃\n*Job Status:* ${{ job.status }}\n*Pull Request:* <https://github.com/${{ github.repository }}/pull/${{ env.PR_NUMBER }}> ${{ env.PR_TITLE }}\n"}
{"text": "<!channel> GitHub Actions success for ${{ github.workflow }} ✅\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* NEW `${{ github.repository }} ${{ steps.check_pypi.outputs.current_tag }}` pip package published 😃\n*Job Status:* ${{ job.status }}\n*Pull Request:* <https://github.com/${{ github.repository }}/pull/${{ env.PR_NUMBER }}> ${{ env.PR_TITLE }}\n"}
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }}
- name: Notify on Slack (Failure)

@ -5,6 +5,10 @@ on:
schedule:
- cron: "0 0 * * *" # Runs at 00:00 UTC every day
permissions:
pull-requests: write
issues: write
jobs:
stale:
runs-on: ubuntu-latest

1
.gitignore vendored

@ -157,6 +157,7 @@ weights/
*.torchscript
*.tflite
*.h5
*.mnn
*_saved_model/
*_web_model/
*_openvino_model/

@ -8,8 +8,8 @@
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://pepy.tech/project/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Ultralytics Docker Pulls"></a>
<a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
<a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
<a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
@ -55,7 +55,7 @@ See below for a quickstart install and usage examples, and see our [Docs](https:
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Ultralytics Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
```bash
pip install ultralytics
@ -63,7 +63,7 @@ pip install ultralytics
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics) [![Ultralytics Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
</details>

@ -8,8 +8,8 @@
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://pepy.tech/project/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Ultralytics Docker Pulls"></a>
<a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
<a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
<a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
@ -55,7 +55,7 @@
在 [**Python>=3.8**](https://www.python.org/) 环境中使用 [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/) 通过 pip 安装包含所有[依赖项](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) 的 ultralytics 包。
[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Ultralytics Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
```bash
pip install ultralytics
@ -63,7 +63,7 @@ pip install ultralytics
有关其他安装方法,包括 [Conda](https://anaconda.org/conda-forge/ultralytics)、[Docker](https://hub.docker.com/r/ultralytics/ultralytics) 和 Git,请参阅 [快速开始指南](https://docs.ultralytics.com/quickstart/)。
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics) [![Ultralytics Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
</details>

@ -0,0 +1,34 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Builds ultralytics/ultralytics:latest-jupyter image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
# Image provides JupyterLab interface for interactive YOLO development and includes tutorial notebooks
# Start from Python-based Ultralytics image for full Python environment
FROM ultralytics/ultralytics:latest-python
# Install JupyterLab for interactive development
RUN /usr/local/bin/pip install jupyterlab
# Create persistent data directory structure
RUN mkdir /data
# Configure YOLO directory paths
RUN mkdir /data/datasets && /usr/local/bin/yolo settings datasets_dir="/data/datasets"
RUN mkdir /data/weights && /usr/local/bin/yolo settings weights_dir="/data/weights"
RUN mkdir /data/runs && /usr/local/bin/yolo settings runs_dir="/data/runs"
# Start JupyterLab with tutorial notebook
ENTRYPOINT ["/usr/local/bin/jupyter", "lab", "--allow-root", "/ultralytics/examples/tutorial.ipynb"]
# Usage Examples -------------------------------------------------------------------------------------------------------
# Build and Push
# t=ultralytics/ultralytics:latest-jupyter && sudo docker build -f docker/Dockerfile-jupyter -t $t . && sudo docker push $t
# Run
# t=ultralytics/ultralytics:latest-jupyter && sudo docker run -it --ipc=host -p 8888:8888 $t
# Pull and Run
# t=ultralytics/ultralytics:latest-jupyter && sudo docker pull $t && sudo docker run -it --ipc=host -p 8888:8888 $t
# Pull and Run with local volume mounted
# t=ultralytics/ultralytics:latest-jupyter && sudo docker pull $t && sudo docker run -it --ipc=host -p 8888:8888 -v "$(pwd)"/datasets:/data/datasets $t

@ -33,9 +33,21 @@ This guide provides a comprehensive overview of three fundamental types of [data
- Bar plots, on the other hand, are suitable for comparing quantities across different categories and showing relationships between a category and its numerical value.
- Lastly, pie charts are effective for illustrating proportions among categories and showing parts of a whole.
!!! analytics "Analytics Examples"
!!! example "Analytics Examples"
=== "Line Graph"
=== "CLI"
```bash
yolo solutions analytics show=True
# pass the source
yolo solutions analytics source="path/to/video/file.mp4"
# generate the pie chart
yolo solutions analytics analytics_type="pie" show=True
```
=== "Python"
```python
import cv2

@ -36,7 +36,20 @@ A heatmap generated with [Ultralytics YOLO11](https://github.com/ultralytics/ult
!!! example "Heatmaps using Ultralytics YOLO11 Example"
=== "Heatmap"
=== "CLI"
```bash
# Run a heatmap example
yolo solutions heatmap show=True
# Pass a source video
yolo solutions heatmap source="path/to/video/file.mp4"
# Pass a custom colormap
yolo solutions heatmap colormap=cv2.COLORMAP_INFERNO
```
=== "Python"
```python
import cv2

@ -263,6 +263,7 @@ fold_lbl_distrb.to_csv(save_path / "kfold_label_distribution.csv")
for k in range(ksplit):
dataset_yaml = ds_yamls[k]
model = YOLO(weights_path, task="detect")
model.train(data=dataset_yaml, epochs=epochs, batch=batch, project=project) # include any train arguments
results[k] = model.metrics # save output metrics for further analysis
```

@ -258,25 +258,30 @@ NCNN is a high-performance neural network inference framework optimized for the
- **Hardware Acceleration**: Tailored for ARM CPUs and GPUs, with specific optimizations for these architectures.
#### MNN
MNN is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models and has industry-leading performance for inference and training on-device. In addition, MNN is also used on embedded devices, such as IoT.
## Comparative Analysis of YOLO11 Deployment Options
The following table provides a snapshot of the various deployment options available for YOLO11 models, helping you to assess which may best fit your project needs based on several critical criteria. For an in-depth look at each deployment option's format, please see the [Ultralytics documentation page on export formats](../modes/export.md#export-formats).
| Deployment Option | Performance Benchmarks | Compatibility and Integration | Community Support and Ecosystem | Case Studies | Maintenance and Updates | Security Considerations | Hardware Acceleration |
| ----------------- | ----------------------------------------------- | ---------------------------------------------- | --------------------------------------------- | ------------------------------------------ | ------------------------------------------- | ------------------------------------------------- | ---------------------------------- |
| PyTorch | Good flexibility; may trade off raw performance | Excellent with Python libraries | Extensive resources and community | Research and prototypes | Regular, active development | Dependent on deployment environment | CUDA support for GPU acceleration |
| TorchScript | Better for production than PyTorch | Smooth transition from PyTorch to C++ | Specialized but narrower than PyTorch | Industry where Python is a bottleneck | Consistent updates with PyTorch | Improved security without full Python | Inherits CUDA support from PyTorch |
| ONNX | Variable depending on runtime | High across different frameworks | Broad ecosystem, supported by many orgs | Flexibility across ML frameworks | Regular updates for new operations | Ensure secure conversion and deployment practices | Various hardware optimizations |
| OpenVINO | Optimized for Intel hardware | Best within Intel ecosystem | Solid in computer vision domain | IoT and edge with Intel hardware | Regular updates for Intel hardware | Robust features for sensitive applications | Tailored for Intel hardware |
| TensorRT | Top-tier on NVIDIA GPUs | Best for NVIDIA hardware | Strong network through NVIDIA | Real-time video and image inference | Frequent updates for new GPUs | Emphasis on security | Designed for NVIDIA GPUs |
| CoreML | Optimized for on-device Apple hardware | Exclusive to Apple ecosystem | Strong Apple and developer support | On-device ML on Apple products | Regular Apple updates | Focus on privacy and security | Apple neural engine and GPU |
| TF SavedModel | Scalable in server environments | Wide compatibility in TensorFlow ecosystem | Large support due to TensorFlow popularity | Serving models at scale | Regular updates by Google and community | Robust features for enterprise | Various hardware accelerations |
| TF GraphDef | Stable for static computation graphs | Integrates well with TensorFlow infrastructure | Resources for optimizing static graphs | Scenarios requiring static graphs | Updates alongside TensorFlow core | Established TensorFlow security practices | TensorFlow acceleration options |
| TF Lite | Speed and efficiency on mobile/embedded | Wide range of device support | Robust community, Google backed | Mobile applications with minimal footprint | Latest features for mobile | Secure environment on end-user devices | GPU and DSP among others |
| TF Edge TPU | Optimized for Google's Edge TPU hardware | Exclusive to Edge TPU devices | Growing with Google and third-party resources | IoT devices requiring real-time processing | Improvements for new Edge TPU hardware | Google's robust IoT security | Custom-designed for Google Coral |
| TF.js | Reasonable in-browser performance | High with web technologies | Web and Node.js developers support | Interactive web applications | TensorFlow team and community contributions | Web platform security model | Enhanced with WebGL and other APIs |
| PaddlePaddle | Competitive, easy to use and scalable | Baidu ecosystem, wide application support | Rapidly growing, especially in China | Chinese market and language processing | Focus on Chinese AI applications | Emphasizes data privacy and security | Including Baidu's Kunlun chips |
| NCNN | Optimized for mobile ARM-based devices | Mobile and embedded ARM systems | Niche but active mobile/embedded ML community | Android and ARM systems efficiency | High performance maintenance on ARM | On-device security advantages | ARM CPUs and GPUs optimizations |
| Deployment Option | Performance Benchmarks | Compatibility and Integration | Community Support and Ecosystem | Case Studies | Maintenance and Updates | Security Considerations | Hardware Acceleration |
| ----------------- | ----------------------------------------------- | ---------------------------------------------- | --------------------------------------------- | ------------------------------------------ | ---------------------------------------------- | ------------------------------------------------- | ---------------------------------- |
| PyTorch | Good flexibility; may trade off raw performance | Excellent with Python libraries | Extensive resources and community | Research and prototypes | Regular, active development | Dependent on deployment environment | CUDA support for GPU acceleration |
| TorchScript | Better for production than PyTorch | Smooth transition from PyTorch to C++ | Specialized but narrower than PyTorch | Industry where Python is a bottleneck | Consistent updates with PyTorch | Improved security without full Python | Inherits CUDA support from PyTorch |
| ONNX | Variable depending on runtime | High across different frameworks | Broad ecosystem, supported by many orgs | Flexibility across ML frameworks | Regular updates for new operations | Ensure secure conversion and deployment practices | Various hardware optimizations |
| OpenVINO | Optimized for Intel hardware | Best within Intel ecosystem | Solid in computer vision domain | IoT and edge with Intel hardware | Regular updates for Intel hardware | Robust features for sensitive applications | Tailored for Intel hardware |
| TensorRT | Top-tier on NVIDIA GPUs | Best for NVIDIA hardware | Strong network through NVIDIA | Real-time video and image inference | Frequent updates for new GPUs | Emphasis on security | Designed for NVIDIA GPUs |
| CoreML | Optimized for on-device Apple hardware | Exclusive to Apple ecosystem | Strong Apple and developer support | On-device ML on Apple products | Regular Apple updates | Focus on privacy and security | Apple neural engine and GPU |
| TF SavedModel | Scalable in server environments | Wide compatibility in TensorFlow ecosystem | Large support due to TensorFlow popularity | Serving models at scale | Regular updates by Google and community | Robust features for enterprise | Various hardware accelerations |
| TF GraphDef | Stable for static computation graphs | Integrates well with TensorFlow infrastructure | Resources for optimizing static graphs | Scenarios requiring static graphs | Updates alongside TensorFlow core | Established TensorFlow security practices | TensorFlow acceleration options |
| TF Lite | Speed and efficiency on mobile/embedded | Wide range of device support | Robust community, Google backed | Mobile applications with minimal footprint | Latest features for mobile | Secure environment on end-user devices | GPU and DSP among others |
| TF Edge TPU | Optimized for Google's Edge TPU hardware | Exclusive to Edge TPU devices | Growing with Google and third-party resources | IoT devices requiring real-time processing | Improvements for new Edge TPU hardware | Google's robust IoT security | Custom-designed for Google Coral |
| TF.js | Reasonable in-browser performance | High with web technologies | Web and Node.js developers support | Interactive web applications | TensorFlow team and community contributions | Web platform security model | Enhanced with WebGL and other APIs |
| PaddlePaddle | Competitive, easy to use and scalable | Baidu ecosystem, wide application support | Rapidly growing, especially in China | Chinese market and language processing | Focus on Chinese AI applications | Emphasizes data privacy and security | Including Baidu's Kunlun chips |
| MNN | High-performance for mobile devices. | Mobile and embedded ARM systems and X86-64 CPU | Mobile/embedded ML community | Moblile systems efficiency | High performance maintenance on Mobile Devices | On-device security advantages | ARM CPUs and GPUs optimizations |
| NCNN | Optimized for mobile ARM-based devices | Mobile and embedded ARM systems | Niche but active mobile/embedded ML community | Android and ARM systems efficiency | High performance maintenance on ARM | On-device security advantages | ARM CPUs and GPUs optimizations |
This comparative analysis gives you a high-level overview. For deployment, it's essential to consider the specific requirements and constraints of your project, and consult the detailed documentation and resources available for each option.

@ -1,12 +1,12 @@
---
comments: true
description: Learn to deploy Ultralytics YOLOv8 on NVIDIA Jetson devices with our detailed guide. Explore performance benchmarks and maximize AI capabilities.
keywords: Ultralytics, YOLOv8, NVIDIA Jetson, JetPack, AI deployment, performance benchmarks, embedded systems, deep learning, TensorRT, computer vision
description: Learn to deploy Ultralytics YOLO11 on NVIDIA Jetson devices with our detailed guide. Explore performance benchmarks and maximize AI capabilities.
keywords: Ultralytics, YOLO11, NVIDIA Jetson, JetPack, AI deployment, performance benchmarks, embedded systems, deep learning, TensorRT, computer vision
---
# Quick Start Guide: NVIDIA Jetson with Ultralytics YOLOv8
# Quick Start Guide: NVIDIA Jetson with Ultralytics YOLO11
This comprehensive guide provides a detailed walkthrough for deploying Ultralytics YOLOv8 on [NVIDIA Jetson](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/) devices. Additionally, it showcases performance benchmarks to demonstrate the capabilities of YOLOv8 on these small and powerful devices.
This comprehensive guide provides a detailed walkthrough for deploying Ultralytics YOLO11 on [NVIDIA Jetson](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/) devices. Additionally, it showcases performance benchmarks to demonstrate the capabilities of YOLO11 on these small and powerful devices.
<p align="center">
<br>
@ -16,7 +16,7 @@ This comprehensive guide provides a detailed walkthrough for deploying Ultralyti
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> How to Setup NVIDIA Jetson with Ultralytics YOLOv8
<strong>Watch:</strong> How to Setup NVIDIA Jetson with Ultralytics YOLO11
</p>
<img width="1024" src="https://github.com/ultralytics/docs/releases/download/0/nvidia-jetson-ecosystem.avif" alt="NVIDIA Jetson Ecosystem">
@ -77,7 +77,7 @@ The below table highlights NVIDIA JetPack versions supported by different NVIDIA
## Quick Start with Docker
The fastest way to get started with Ultralytics YOLOv8 on NVIDIA Jetson is to run with pre-built docker images for Jetson. Refer to the table above and choose the JetPack version according to the Jetson device you own.
The fastest way to get started with Ultralytics YOLO11 on NVIDIA Jetson is to run with pre-built docker images for Jetson. Refer to the table above and choose the JetPack version according to the Jetson device you own.
=== "JetPack 4"
@ -242,7 +242,7 @@ Out of all the model export formats supported by Ultralytics, TensorRT delivers
### Convert Model to TensorRT and Run Inference
The YOLOv8n model in PyTorch format is converted to TensorRT to run inference with the exported model.
The YOLO11n model in PyTorch format is converted to TensorRT to run inference with the exported model.
!!! example
@ -251,14 +251,14 @@ The YOLOv8n model in PyTorch format is converted to TensorRT to run inference wi
```python
from ultralytics import YOLO
# Load a YOLOv8n PyTorch model
model = YOLO("yolov8n.pt")
# Load a YOLO11n PyTorch model
model = YOLO("yolo11n.pt")
# Export the model to TensorRT
model.export(format="engine") # creates 'yolov8n.engine'
model.export(format="engine") # creates 'yolo11n.engine'
# Load the exported TensorRT model
trt_model = YOLO("yolov8n.engine")
trt_model = YOLO("yolo11n.engine")
# Run inference
results = trt_model("https://ultralytics.com/images/bus.jpg")
@ -267,11 +267,11 @@ The YOLOv8n model in PyTorch format is converted to TensorRT to run inference wi
=== "CLI"
```bash
# Export a YOLOv8n PyTorch model to TensorRT format
yolo export model=yolov8n.pt format=engine # creates 'yolov8n.engine'
# Export a YOLO11n PyTorch model to TensorRT format
yolo export model=yolo11n.pt format=engine # creates 'yolo11n.engine'
# Run inference with the exported model
yolo predict model=yolov8n.engine source='https://ultralytics.com/images/bus.jpg'
yolo predict model=yolo11n.engine source='https://ultralytics.com/images/bus.jpg'
```
### Use NVIDIA Deep Learning Accelerator (DLA)
@ -292,14 +292,14 @@ The following Jetson devices are equipped with DLA hardware:
```python
from ultralytics import YOLO
# Load a YOLOv8n PyTorch model
model = YOLO("yolov8n.pt")
# Load a YOLO11n PyTorch model
model = YOLO("yolo11n.pt")
# Export the model to TensorRT with DLA enabled (only works with FP16 or INT8)
model.export(format="engine", device="dla:0", half=True) # dla:0 or dla:1 corresponds to the DLA cores
# Load the exported TensorRT model
trt_model = YOLO("yolov8n.engine")
trt_model = YOLO("yolo11n.engine")
# Run inference
results = trt_model("https://ultralytics.com/images/bus.jpg")
@ -308,119 +308,119 @@ The following Jetson devices are equipped with DLA hardware:
=== "CLI"
```bash
# Export a YOLOv8n PyTorch model to TensorRT format with DLA enabled (only works with FP16 or INT8)
yolo export model=yolov8n.pt format=engine device="dla:0" half=True # dla:0 or dla:1 corresponds to the DLA cores
# Export a YOLO11n PyTorch model to TensorRT format with DLA enabled (only works with FP16 or INT8)
yolo export model=yolo11n.pt format=engine device="dla:0" half=True # dla:0 or dla:1 corresponds to the DLA cores
# Run inference with the exported model on the DLA
yolo predict model=yolov8n.engine source='https://ultralytics.com/images/bus.jpg'
yolo predict model=yolo11n.engine source='https://ultralytics.com/images/bus.jpg'
```
!!! note
Visit the [Export page](../modes/export.md#arguments) to access additional arguments when exporting models to different model formats
## NVIDIA Jetson Orin YOLOv8 Benchmarks
## NVIDIA Jetson Orin YOLO11 Benchmarks
YOLOv8 benchmarks were run by the Ultralytics team on 10 different model formats measuring speed and [accuracy](https://www.ultralytics.com/glossary/accuracy): PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, TF SavedModel, TF GraphDef, TF Lite, PaddlePaddle, NCNN. Benchmarks were run on Seeed Studio reComputer J4012 powered by Jetson Orin NX 16GB device at FP32 [precision](https://www.ultralytics.com/glossary/precision) with default input image size of 640.
YOLO11 benchmarks were run by the Ultralytics team on 10 different model formats measuring speed and [accuracy](https://www.ultralytics.com/glossary/accuracy): PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, TF SavedModel, TF GraphDef, TF Lite, PaddlePaddle, NCNN. Benchmarks were run on Seeed Studio reComputer J4012 powered by Jetson Orin NX 16GB device at FP32 [precision](https://www.ultralytics.com/glossary/precision) with default input image size of 640.
### Comparison Chart
Even though all model exports are working with NVIDIA Jetson, we have only included **PyTorch, TorchScript, TensorRT** for the comparison chart below because, they make use of the GPU on the Jetson and are guaranteed to produce the best results. All the other exports only utilize the CPU and the performance is not as good as the above three. You can find benchmarks for all exports in the section after this chart.
<div style="text-align: center;">
<img width="800" src="https://github.com/ultralytics/docs/releases/download/0/nvidia-jetson-ecosystem-2.avif" alt="NVIDIA Jetson Ecosystem">
<img src="https://github.com/ultralytics/docs/releases/download/0/nvidia-jetson-benchmarks.avif" alt="NVIDIA Jetson Ecosystem">
</div>
### Detailed Comparison Table
The below table represents the benchmark results for five different models (YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x) across ten different formats (PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, TF SavedModel, TF GraphDef, TF Lite, PaddlePaddle, NCNN), giving us the status, size, mAP50-95(B) metric, and inference time for each combination.
The below table represents the benchmark results for five different models (YOLO11n, YOLO11s, YOLO11m, YOLO11l, YOLO11x) across ten different formats (PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, TF SavedModel, TF GraphDef, TF Lite, PaddlePaddle, NCNN), giving us the status, size, mAP50-95(B) metric, and inference time for each combination.
!!! performance
=== "YOLOv8n"
=== "YOLO11n"
| Format | Status | Size on disk (MB) | mAP50-95(B) | Inference time (ms/im) |
|-----------------|--------|-------------------|-------------|------------------------|
| PyTorch | ✅ | 6.2 | 0.6381 | 14.3 |
| TorchScript | ✅ | 12.4 | 0.6117 | 13.3 |
| ONNX | ✅ | 12.2 | 0.6092 | 70.6 |
| OpenVINO | ✅ | 12.3 | 0.6092 | 104.2 |
| TensorRT (FP32) | ✅ | 16.1 | 0.6091 | 8.01 |
| TensorRT (FP16) | ✅ | 9.2 | 0.6093 | 4.55 |
| TensorRT (INT8) | ✅ | 5.9 | 0.2759 | 4.09 |
| TF SavedModel | ✅ | 30.6 | 0.6092 | 141.74 |
| TF GraphDef | ✅ | 12.3 | 0.6092 | 199.93 |
| TF Lite | ✅ | 12.3 | 0.6092 | 349.18 |
| PaddlePaddle | ✅ | 24.4 | 0.6030 | 555 |
| NCNN | ✅ | 12.2 | 0.6092 | 32 |
=== "YOLOv8s"
| PyTorch | ✅ | 5.4 | 0.6176 | 19.80 |
| TorchScript | ✅ | 10.5 | 0.6100 | 13.30 |
| ONNX | ✅ | 10.2 | 0.6082 | 67.92 |
| OpenVINO | ✅ | 10.4 | 0.6082 | 118.21 |
| TensorRT (FP32) | ✅ | 14.1 | 0.6100 | 7.94 |
| TensorRT (FP16) | ✅ | 8.3 | 0.6082 | 4.80 |
| TensorRT (INT8) | ✅ | 6.6 | 0.3256 | 4.17 |
| TF SavedModel | ✅ | 25.8 | 0.6082 | 185.88 |
| TF GraphDef | ✅ | 10.3 | 0.6082 | 256.66 |
| TF Lite | ✅ | 10.3 | 0.6082 | 284.64 |
| PaddlePaddle | ✅ | 20.4 | 0.6082 | 477.41 |
| NCNN | ✅ | 10.2 | 0.6106 | 32.18 |
=== "YOLO11s"
| Format | Status | Size on disk (MB) | mAP50-95(B) | Inference time (ms/im) |
|-----------------|--------|-------------------|-------------|------------------------|
| PyTorch | ✅ | 21.5 | 0.6967 | 18 |
| TorchScript | ✅ | 43.0 | 0.7136 | 23.81 |
| ONNX | ✅ | 42.8 | 0.7136 | 185.55 |
| OpenVINO | ✅ | 42.9 | 0.7136 | 243.97 |
| TensorRT (FP32) | ✅ | 46.4 | 0.7136 | 14.01 |
| TensorRT (FP16) | ✅ | 24.2 | 0.722 | 7.16 |
| TensorRT (INT8) | ✅ | 13.7 | 0.4233 | 5.49 |
| TF SavedModel | ✅ | 107 | 0.7136 | 260.03 |
| TF GraphDef | ✅ | 42.8 | 0.7136 | 423.4 |
| TF Lite | ✅ | 42.8 | 0.7136 | 1046.64 |
| PaddlePaddle | ✅ | 85.5 | 0.7140 | 1464 |
| NCNN | ✅ | 42.7 | 0.7200 | 63 |
=== "YOLOv8m"
| PyTorch | ✅ | 18.4 | 0.7526 | 20.20 |
| TorchScript | ✅ | 36.5 | 0.7416 | 23.42 |
| ONNX | ✅ | 36.3 | 0.7416 | 162.01 |
| OpenVINO | ✅ | 36.4 | 0.7416 | 159.61 |
| TensorRT (FP32) | ✅ | 40.3 | 0.7416 | 13.93 |
| TensorRT (FP16) | ✅ | 21.7 | 0.7416 | 7.47 |
| TensorRT (INT8) | ✅ | 13.6 | 0.3179 | 5.66 |
| TF SavedModel | ✅ | 91.1 | 0.7416 | 316.46 |
| TF GraphDef | ✅ | 36.4 | 0.7416 | 506.71 |
| TF Lite | ✅ | 36.4 | 0.7416 | 842.97 |
| PaddlePaddle | ✅ | 72.5 | 0.7416 | 1172.57 |
| NCNN | ✅ | 36.2 | 0.7419 | 66.00 |
=== "YOLO11m"
| Format | Status | Size on disk (MB) | mAP50-95(B) | Inference time (ms/im) |
|-----------------|--------|-------------------|-------------|------------------------|
| PyTorch | ✅ | 49.7 | 0.7370 | 36.4 |
| TorchScript | ✅ | 99.2 | 0.7285 | 53.58 |
| ONNX | ✅ | 99 | 0.7280 | 452.09 |
| OpenVINO | ✅ | 99.1 | 0.7280 | 544.36 |
| TensorRT (FP32) | ✅ | 102.4 | 0.7285 | 31.51 |
| TensorRT (FP16) | ✅ | 52.6 | 0.7324 | 14.88 |
| TensorRT (INT8) | ✅ | 28.6 | 0.3283 | 10.89 |
| TF SavedModel | ✅ | 247.5 | 0.7280 | 543.65 |
| TF GraphDef | ✅ | 99 | 0.7280 | 906.63 |
| TF Lite | ✅ | 99 | 0.7280 | 2758.08 |
| PaddlePaddle | ✅ | 197.9 | 0.7280 | 3678 |
| NCNN | ✅ | 98.9 | 0.7260 | 135 |
=== "YOLOv8l"
| PyTorch | ✅ | 38.8 | 0.7595 | 36.70 |
| TorchScript | ✅ | 77.3 | 0.7643 | 50.95 |
| ONNX | ✅ | 76.9 | 0.7643 | 416.34 |
| OpenVINO | ✅ | 77.1 | 0.7643 | 370.99 |
| TensorRT (FP32) | ✅ | 81.5 | 0.7640 | 30.49 |
| TensorRT (FP16) | ✅ | 42.2 | 0.7658 | 14.93 |
| TensorRT (INT8) | ✅ | 24.3 | 0.4118 | 10.32 |
| TF SavedModel | ✅ | 192.7 | 0.7643 | 597.08 |
| TF GraphDef | ✅ | 77.0 | 0.7643 | 1016.12 |
| TF Lite | ✅ | 77.0 | 0.7643 | 2494.60 |
| PaddlePaddle | ✅ | 153.8 | 0.7643 | 3218.99 |
| NCNN | ✅ | 76.8 | 0.7691 | 192.77 |
=== "YOLO11l"
| Format | Status | Size on disk (MB) | mAP50-95(B) | Inference time (ms/im) |
|-----------------|--------|-------------------|-------------|------------------------|
| PyTorch | ✅ | 83.7 | 0.7768 | 61.3 |
| TorchScript | ✅ | 167.2 | 0.7554 | 87.9 |
| ONNX | ✅ | 166.8 | 0.7551 | 852.29 |
| OpenVINO | ✅ | 167 | 0.7551 | 1012.6 |
| TensorRT (FP32) | ✅ | 170.5 | 0.7554 | 49.79 |
| TensorRT (FP16) | ✅ | 86.1 | 0.7535 | 22.89 |
| TensorRT (INT8) | ✅ | 46.4 | 0.4048 | 14.61 |
| TF SavedModel | ✅ | 417.2 | 0.7551 | 990.45 |
| TF GraphDef | ✅ | 166.9 | 0.7551 | 1649.86 |
| TF Lite | ✅ | 166.9 | 0.7551 | 5652.37 |
| PaddlePaddle | ✅ | 333.6 | 0.7551 | 7114.67 |
| NCNN | ✅ | 166.8 | 0.7685 | 231.9 |
=== "YOLOv8x"
| PyTorch | ✅ | 49.0 | 0.7475 | 47.6 |
| TorchScript | ✅ | 97.6 | 0.7250 | 66.36 |
| ONNX | ✅ | 97.0 | 0.7250 | 532.58 |
| OpenVINO | ✅ | 97.3 | 0.7250 | 477.55 |
| TensorRT (FP32) | ✅ | 101.6 | 0.7250 | 38.71 |
| TensorRT (FP16) | ✅ | 52.6 | 0.7265 | 19.35 |
| TensorRT (INT8) | ✅ | 31.6 | 0.3856 | 13.50 |
| TF SavedModel | ✅ | 243.3 | 0.7250 | 895.24 |
| TF GraphDef | ✅ | 97.2 | 0.7250 | 1301.19 |
| TF Lite | ✅ | 97.2 | 0.7250 | 3202.93 |
| PaddlePaddle | ✅ | 193.9 | 0.7250 | 4206.98 |
| NCNN | ✅ | 96.9 | 0.7252 | 225.75 |
=== "YOLO11x"
| Format | Status | Size on disk (MB) | mAP50-95(B) | Inference time (ms/im) |
|-----------------|--------|-------------------|-------------|------------------------|
| PyTorch | ✅ | 130.5 | 0.7759 | 93 |
| TorchScript | ✅ | 260.7 | 0.7472 | 135.1 |
| ONNX | ✅ | 260.4 | 0.7479 | 1296.13 |
| OpenVINO | ✅ | 260.6 | 0.7479 | 1502.15 |
| TensorRT (FP32) | ✅ | 264.0 | 0.7469 | 80.01 |
| TensorRT (FP16) | ✅ | 133.3 | 0.7513 | 40.76 |
| TensorRT (INT8) | ✅ | 70.2 | 0.4277 | 22.08 |
| TF SavedModel | ✅ | 651.1 | 0.7479 | 1451.76 |
| TF GraphDef | ✅ | 260.5 | 0.7479 | 4029.36 |
| TF Lite | ✅ | 260.4 | 0.7479 | 8772.86 |
| PaddlePaddle | ✅ | 520.8 | 0.7479 | 10619.53 |
| NCNN | ✅ | 260.4 | 0.7646 | 376.38 |
| PyTorch | ✅ | 109.3 | 0.8288 | 85.60 |
| TorchScript | ✅ | 218.1 | 0.8308 | 121.67 |
| ONNX | ✅ | 217.5 | 0.8308 | 1073.14 |
| OpenVINO | ✅ | 217.8 | 0.8308 | 955.60 |
| TensorRT (FP32) | ✅ | 221.6 | 0.8307 | 75.84 |
| TensorRT (FP16) | ✅ | 113.1 | 0.8295 | 35.75 |
| TensorRT (INT8) | ✅ | 62.2 | 0.4783 | 22.23 |
| TF SavedModel | ✅ | 545.0 | 0.8308 | 1497.40 |
| TF GraphDef | ✅ | 217.8 | 0.8308 | 2552.42 |
| TF Lite | ✅ | 217.8 | 0.8308 | 7044.58 |
| PaddlePaddle | ✅ | 434.9 | 0.8308 | 8386.73 |
| NCNN | ✅ | 217.3 | 0.8304 | 486.36 |
[Explore more benchmarking efforts by Seeed Studio](https://www.seeedstudio.com/blog/2023/03/30/yolov8-performance-benchmarks-on-nvidia-jetson-devices) running on different versions of NVIDIA Jetson hardware.
@ -435,25 +435,25 @@ To reproduce the above Ultralytics benchmarks on all export [formats](../modes/e
```python
from ultralytics import YOLO
# Load a YOLOv8n PyTorch model
model = YOLO("yolov8n.pt")
# Load a YOLO11n PyTorch model
model = YOLO("yolo11n.pt")
# Benchmark YOLOv8n speed and accuracy on the COCO8 dataset for all all export formats
# Benchmark YOLO11n speed and accuracy on the COCO8 dataset for all all export formats
results = model.benchmarks(data="coco8.yaml", imgsz=640)
```
=== "CLI"
```bash
# Benchmark YOLOv8n speed and accuracy on the COCO8 dataset for all all export formats
yolo benchmark model=yolov8n.pt data=coco8.yaml imgsz=640
# Benchmark YOLO11n speed and accuracy on the COCO8 dataset for all all export formats
yolo benchmark model=yolo11n.pt data=coco8.yaml imgsz=640
```
Note that benchmarking results might vary based on the exact hardware and software configuration of a system, as well as the current workload of the system at the time the benchmarks are run. For the most reliable results use a dataset with a large number of images, i.e. `data='coco8.yaml' (4 val images), or `data='coco.yaml'` (5000 val images).
## Best Practices when using NVIDIA Jetson
When using NVIDIA Jetson, there are a couple of best practices to follow in order to enable maximum performance on the NVIDIA Jetson running YOLOv8.
When using NVIDIA Jetson, there are a couple of best practices to follow in order to enable maximum performance on the NVIDIA Jetson running YOLO11.
1. Enable MAX Power Mode
@ -486,29 +486,29 @@ When using NVIDIA Jetson, there are a couple of best practices to follow in orde
## Next Steps
Congratulations on successfully setting up YOLOv8 on your NVIDIA Jetson! For further learning and support, visit more guide at [Ultralytics YOLOv8 Docs](../index.md)!
Congratulations on successfully setting up YOLO11 on your NVIDIA Jetson! For further learning and support, visit more guide at [Ultralytics YOLO11 Docs](../index.md)!
## FAQ
### How do I deploy Ultralytics YOLOv8 on NVIDIA Jetson devices?
### How do I deploy Ultralytics YOLO11 on NVIDIA Jetson devices?
Deploying Ultralytics YOLOv8 on NVIDIA Jetson devices is a straightforward process. First, flash your Jetson device with the NVIDIA JetPack SDK. Then, either use a pre-built Docker image for quick setup or manually install the required packages. Detailed steps for each approach can be found in sections [Quick Start with Docker](#quick-start-with-docker) and [Start with Native Installation](#start-with-native-installation).
Deploying Ultralytics YOLO11 on NVIDIA Jetson devices is a straightforward process. First, flash your Jetson device with the NVIDIA JetPack SDK. Then, either use a pre-built Docker image for quick setup or manually install the required packages. Detailed steps for each approach can be found in sections [Quick Start with Docker](#quick-start-with-docker) and [Start with Native Installation](#start-with-native-installation).
### What performance benchmarks can I expect from YOLOv8 models on NVIDIA Jetson devices?
### What performance benchmarks can I expect from YOLO11 models on NVIDIA Jetson devices?
YOLOv8 models have been benchmarked on various NVIDIA Jetson devices showing significant performance improvements. For example, the TensorRT format delivers the best inference performance. The table in the [Detailed Comparison Table](#detailed-comparison-table) section provides a comprehensive view of performance metrics like mAP50-95 and inference time across different model formats.
YOLO11 models have been benchmarked on various NVIDIA Jetson devices showing significant performance improvements. For example, the TensorRT format delivers the best inference performance. The table in the [Detailed Comparison Table](#detailed-comparison-table) section provides a comprehensive view of performance metrics like mAP50-95 and inference time across different model formats.
### Why should I use TensorRT for deploying YOLOv8 on NVIDIA Jetson?
### Why should I use TensorRT for deploying YOLO11 on NVIDIA Jetson?
TensorRT is highly recommended for deploying YOLOv8 models on NVIDIA Jetson due to its optimal performance. It accelerates inference by leveraging the Jetson's GPU capabilities, ensuring maximum efficiency and speed. Learn more about how to convert to TensorRT and run inference in the [Use TensorRT on NVIDIA Jetson](#use-tensorrt-on-nvidia-jetson) section.
TensorRT is highly recommended for deploying YOLO11 models on NVIDIA Jetson due to its optimal performance. It accelerates inference by leveraging the Jetson's GPU capabilities, ensuring maximum efficiency and speed. Learn more about how to convert to TensorRT and run inference in the [Use TensorRT on NVIDIA Jetson](#use-tensorrt-on-nvidia-jetson) section.
### How can I install PyTorch and Torchvision on NVIDIA Jetson?
To install PyTorch and Torchvision on NVIDIA Jetson, first uninstall any existing versions that may have been installed via pip. Then, manually install the compatible PyTorch and Torchvision versions for the Jetson's ARM64 architecture. Detailed instructions for this process are provided in the [Install PyTorch and Torchvision](#install-pytorch-and-torchvision) section.
### What are the best practices for maximizing performance on NVIDIA Jetson when using YOLOv8?
### What are the best practices for maximizing performance on NVIDIA Jetson when using YOLO11?
To maximize performance on NVIDIA Jetson with YOLOv8, follow these best practices:
To maximize performance on NVIDIA Jetson with YOLO11, follow these best practices:
1. Enable MAX Power Mode to utilize all CPU and GPU cores.
2. Enable Jetson Clocks to run all cores at their maximum frequency.

@ -48,7 +48,20 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
!!! example "Object Counting using YOLO11 Example"
=== "Count in Region"
=== "CLI"
```bash
# Run a counting example
yolo solutions count show=True
# Pass a source video
yolo solutions count source="path/to/video/file.mp4"
# Pass region coordinates
yolo solutions count region=[(20, 400), (1080, 404), (1080, 360), (20, 360)]
```
=== "Python"
```python
import cv2

@ -35,7 +35,20 @@ Queue management using [Ultralytics YOLO11](https://github.com/ultralytics/ultra
!!! example "Queue Management using YOLO11 Example"
=== "Queue Manager"
=== "CLI"
```bash
# Run a queue example
yolo solutions queue show=True
# Pass a source video
yolo solutions queue source="path/to/video/file.mp4"
# Pass queue coordinates
yolo solutions queue region=[(20, 400), (1080, 404), (1080, 360), (20, 360)]
```
=== "Python"
```python
import cv2

@ -40,7 +40,20 @@ keywords: Ultralytics YOLO11, speed estimation, object tracking, computer vision
!!! example "Speed Estimation using YOLO11 Example"
=== "Speed Estimation"
=== "CLI"
```bash
# Run a speed example
yolo solutions speed show=True
# Pass a source video
yolo solutions speed source="path/to/video/file.mp4"
# Pass region coordinates
yolo solutions speed region=[(20, 400), (1080, 404), (1080, 360), (20, 360)]
```
=== "Python"
```python
import cv2

@ -80,6 +80,37 @@ The Triton Model Repository is a storage location where Triton can access and lo
# Create config file
(triton_model_path / "config.pbtxt").touch()
# (Optional) Enable TensorRT for GPU inference
# First run will be slow due to TensorRT engine conversion
data = """
optimization {
execution_accelerators {
gpu_execution_accelerator {
name: "tensorrt"
parameters {
key: "precision_mode"
value: "FP16"
}
parameters {
key: "max_workspace_size_bytes"
value: "3221225472"
}
parameters {
key: "trt_engine_cache_enable"
value: "1"
}
parameters {
key: "trt_engine_cache_path"
value: "/models/yolo/1"
}
}
}
}
"""
with open(triton_model_path / "config.pbtxt", "w") as f:
f.write(data)
```
## Running Triton Inference Server
@ -94,7 +125,7 @@ import time
from tritonclient.http import InferenceServerClient
# Define image https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver
tag = "nvcr.io/nvidia/tritonserver:23.09-py3" # 6.4 GB
tag = "nvcr.io/nvidia/tritonserver:24.09-py3" # 8.57 GB
# Pull the image
subprocess.call(f"docker pull {tag}", shell=True)
@ -102,7 +133,7 @@ subprocess.call(f"docker pull {tag}", shell=True)
# Run the Triton server and capture the container ID
container_id = (
subprocess.check_output(
f"docker run -d --rm -v {triton_repo_path}:/models -p 8000:8000 {tag} tritonserver --model-repository=/models",
f"docker run -d --rm --gpus 0 -v {triton_repo_path}:/models -p 8000:8000 {tag} tritonserver --model-repository=/models",
shell=True,
)
.decode("utf-8")
@ -187,13 +218,13 @@ Setting up [Ultralytics YOLO11](https://docs.ultralytics.com/models/yolov8/) wit
from tritonclient.http import InferenceServerClient
# Define image https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver
tag = "nvcr.io/nvidia/tritonserver:23.09-py3"
tag = "nvcr.io/nvidia/tritonserver:24.09-py3"
subprocess.call(f"docker pull {tag}", shell=True)
container_id = (
subprocess.check_output(
f"docker run -d --rm -v {triton_repo_path}/models -p 8000:8000 {tag} tritonserver --model-repository=/models",
f"docker run -d --rm --gpus 0 -v {triton_repo_path}/models -p 8000:8000 {tag} tritonserver --model-repository=/models",
shell=True,
)
.decode("utf-8")

@ -36,7 +36,20 @@ Monitoring workouts through pose estimation with [Ultralytics YOLO11](https://gi
!!! example "Workouts Monitoring Example"
=== "Workouts Monitoring"
=== "CLI"
```bash
# Run a workout example
yolo solutions workout show=True
# Pass a source video
yolo solutions workout source="path/to/video/file.mp4"
# Use keypoints for pushups
yolo solutions workout kpts=[6, 8, 10]
```
=== "Python"
```python
import cv2

@ -19,16 +19,17 @@ keywords: Ultralytics, YOLO, YOLO11, object detection, image segmentation, deep
<a href="https://docs.ultralytics.com/ar">العربية</a>
<br>
<br>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLO Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<a href="https://discord.com/invite/ultralytics"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
<a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
<a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://pepy.tech/project/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
<a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
<a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
<a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
<a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
<a href="https://mybinder.org/v2/gh/ultralytics/ultralytics/HEAD?labpath=examples%2Ftutorial.ipynb"><img src="https://mybinder.org/badge_logo.svg" alt="Open Ultralytics In Binder"></a>
</div>
Introducing [Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics), the latest version of the acclaimed real-time object detection and image segmentation model. YOLO11 is built on cutting-edge advancements in [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv), offering unparalleled performance in terms of speed and [accuracy](https://www.ultralytics.com/glossary/accuracy). Its streamlined design makes it suitable for various applications and easily adaptable to different hardware platforms, from edge devices to cloud APIs.

@ -0,0 +1,160 @@
---
comments: true
description: Learn how to use Albumentations with YOLO11 to enhance data augmentation, improve model performance, and streamline your computer vision projects.
keywords: Albumentations, YOLO11, data augmentation, Ultralytics, computer vision, object detection, model training, image transformations, machine learning
---
# Enhance Your Dataset to Train YOLO11 Using Albumentations
When you are building [computer vision models](../models/index.md), the quality and variety of your [training data](../datasets/index.md) can play a big role in how well your model performs. Albumentations offers a fast, flexible, and efficient way to apply a wide range of image transformations that can improve your model's ability to adapt to real-world scenarios. It easily integrates with [Ultralytics YOLO11](https://github.com/ultralytics/ultralytics) and can help you create robust datasets for [object detection](../tasks/detect.md), [segmentation](../tasks/segment.md), and [classification](../tasks/classify.md) tasks.
By using Albumentations, you can boost your YOLO11 training data with techniques like geometric transformations and color adjustments. In this article, we'll see how Albumentations can improve your [data augmentation](../guides/preprocessing_annotated_data.md) process and make your [YOLO11 projects](../solutions/index.md) even more impactful. Let's get started!
## Albumentations for Image Augmentation
[Albumentations](https://albumentations.ai/) is an open-source image augmentation library created in [June 2018](https://arxiv.org/pdf/1809.06839). It is designed to simplify and accelerate the image augmentation process in [computer vision](https://www.ultralytics.com/blog/exploring-image-processing-computer-vision-and-machine-vision). Created with [performance](https://www.ultralytics.com/blog/measuring-ai-performance-to-weigh-the-impact-of-your-innovations) and flexibility in mind, it supports many diverse augmentation techniques, ranging from simple transformations like rotations and flips to more complex adjustments like brightness and contrast changes. Albumentations helps developers generate rich, varied datasets for tasks like [image classification](https://www.youtube.com/watch?v=5BO0Il_YYAg), [object detection](https://www.youtube.com/watch?v=5ku7npMrW40&t=1s), and [segmentation](https://www.youtube.com/watch?v=o4Zd-IeMlSY).
You can use Albumentations to easily apply augmentations to images, [segmentation masks](https://www.ultralytics.com/glossary/image-segmentation), [bounding boxes](https://www.ultralytics.com/glossary/bounding-box), and [key points](../datasets/pose/index.md), and make sure that all elements of your dataset are transformed together. It works seamlessly with popular deep learning frameworks like [PyTorch](../integrations/torchscript.md) and [TensorFlow](../integrations/tensorboard.md), making it accessible for a wide range of projects.
Also, Albumentations is a great option for augmentation whether you're handling small datasets or large-scale [computer vision tasks](../tasks/index.md). It ensures fast and efficient processing, cutting down the time spent on data preparation. At the same time, it helps improve [model performance](../guides/yolo-performance-metrics.md), making your models more effective in real-world applications.
## Key Features of Albumentations
Albumentations offers many useful features that simplify complex image augmentations for a wide range of [computer vision applications](https://www.ultralytics.com/blog/exploring-how-the-applications-of-computer-vision-work). Here are some of the key features:
- **Wide Range of Transformations**: Albumentations offers over [70 different transformations](https://github.com/albumentations-team/albumentations?tab=readme-ov-file#list-of-augmentations), including geometric changes (e.g., rotation, flipping), color adjustments (e.g., brightness, contrast), and noise addition (e.g., Gaussian noise). Having multiple options enables the creation of highly diverse and robust training datasets.
<p align="center">
<img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/albumentations-augmentation.avif" alt="Example of Image Augmentations">
</p>
- **High Performance Optimization**: Built on OpenCV and NumPy, Albumentations uses advanced optimization techniques like SIMD (Single Instruction, Multiple Data), which processes multiple data points simultaneously to speed up processing. It handles large datasets quickly, making it one of the fastest options available for image augmentation.
- **Three Levels of Augmentation**: Albumentations supports three levels of augmentation: pixel-level transformations, spatial-level transformations, and mixing-level transformation. Pixel-level transformations only affect the input images without altering masks, bounding boxes, or key points. Meanwhile, both the image and its elements, like masks and bounding boxes, are transformed using spatial-level transformations. Furthermore, mixing-level transformations are a unique way to augment data as it combines multiple images into one.
![Overview of the Different Levels of Augmentations](https://github.com/ultralytics/docs/releases/download/0/levels-of-augmentation.avif)
- **[Benchmarking Results](https://albumentations.ai/docs/benchmarking_results/)**: When it comes to benchmarking, Albumentations consistently outperforms other libraries, especially with large datasets.
## Why Should You Use Albumentations for Your Vision AI Projects?
With respect to image augmentation, Albumentations stands out as a reliable tool for computer vision tasks. Here are a few key reasons why you should consider using it for your Vision AI projects:
- **Easy-to-Use API**: Albumentations provides a single, straightforward API for applying a wide range of augmentations to images, masks, bounding boxes, and keypoints. It's designed to adapt easily to different datasets, making [data preparation](../guides/data-collection-and-annotation.md) simpler and more efficient.
- **Rigorous Bug Testing**: Bugs in the augmentation pipeline can silently corrupt input data, often going unnoticed but ultimately degrading model performance. Albumentations addresses this with a thorough test suite that helps catch bugs early in development.
- **Extensibility**: Albumentations can be used to easily add new augmentations and use them in computer vision pipelines through a single interface along with built-in transformations.
## How to Use Albumentations to Augment Data for YOLO11 Training
Now that we've covered what Albumentations is and what it can do, let's look at how to use it to augment your data for YOLO11 model training. It's easy to set up because it integrates directly into [Ultralytics' training mode](../modes/train.md) and applies automatically if you have the Albumentations package installed.
### Installation
To use Albumentations with YOLOv11, start by making sure you have the necessary packages installed. If Albumentations isn't installed, the augmentations won't be applied during training. Once set up, you'll be ready to create an augmented dataset for training, with Albumentations integrated to enhance your model automatically.
!!! tip "Installation"
=== "CLI"
```bash
# Install the required packages
pip install albumentations ultralytics
```
For detailed instructions and best practices related to the installation process, check our [Ultralytics Installation guide](../quickstart.md). While installing the required packages for YOLO11, if you encounter any difficulties, consult our [Common Issues guide](../guides/yolo-common-issues.md) for solutions and tips.
### Usage
After installing the necessary packages, you're ready to start using Albumentations with YOLO11. When you train YOLOv11, a set of augmentations is automatically applied through its integration with Albumentations, making it easy to enhance your model's performance.
!!! example "Usage"
=== "Python"
```python
from ultralytics import YOLO
# Load a pre-trained model
model = YOLO("yolo11n.pt")
# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
```
Next, let's take look a closer look at the specific augmentations that are applied during training.
### Blur
The Blur transformation in Albumentations applies a simple blur effect to the image by averaging pixel values within a small square area, or kernel. This is done using OpenCV's `cv2.blur` function, which helps reduce noise in the image, though it also slightly reduces image details.
Here are the parameters and values used in this integration:
- **blur_limit**: This controls the size range of the blur effect. The default range is (3, 7), meaning the kernel size for the blur can vary between 3 and 7 pixels, with only odd numbers allowed to keep the blur centered.
- **p**: The probability of applying the blur. In the integration, p=0.01, so there's a 1% chance that this blur will be applied to each image. The low probability allows for occasional blur effects, introducing a bit of variation to help the model generalize without over-blurring the images.
<img width="776" alt="An Example of the Blur Augmentation" src="https://github.com/ultralytics/docs/releases/download/0/albumentations-blur.avif">
### Median Blur
The MedianBlur transformation in Albumentations applies a median blur effect to the image, which is particularly useful for reducing noise while preserving edges. Unlike typical blurring methods, MedianBlur uses a median filter, which is especially effective at removing salt-and-pepper noise while maintaining sharpness around the edges.
Here are the parameters and values used in this integration:
- **blur_limit**: This parameter controls the maximum size of the blurring kernel. In this integration, it defaults to a range of (3, 7), meaning the kernel size for the blur is randomly chosen between 3 and 7 pixels, with only odd values allowed to ensure proper alignment.
- **p**: Sets the probability of applying the median blur. Here, p=0.01, so the transformation has a 1% chance of being applied to each image. This low probability ensures that the median blur is used sparingly, helping the model generalize by occasionally seeing images with reduced noise and preserved edges.
The image below shows an example of this augmentation applied to an image.
<img width="764" alt="An Example of the MedianBlur Augmentation" src="https://github.com/ultralytics/docs/releases/download/0/albumentations-median-blur.avif">
### Grayscale
The ToGray transformation in Albumentations converts an image to grayscale, reducing it to a single-channel format and optionally replicating this channel to match a specified number of output channels. Different methods can be used to adjust how grayscale brightness is calculated, ranging from simple averaging to more advanced techniques for realistic perception of contrast and brightness.
Here are the parameters and values used in this integration:
- **num_output_channels**: Sets the number of channels in the output image. If this value is more than 1, the single grayscale channel will be replicated to create a multi-channel grayscale image. By default, it's set to 3, giving a grayscale image with three identical channels.
- **method**: Defines the grayscale conversion method. The default method, "weighted_average", applies a formula (0.299R + 0.587G + 0.114B) that closely aligns with human perception, providing a natural-looking grayscale effect. Other options, like "from_lab", "desaturation", "average", "max", and "pca", offer alternative ways to create grayscale images based on various needs for speed, brightness emphasis, or detail preservation.
- **p**: Controls how often the grayscale transformation is applied. With p=0.01, there is a 1% chance of converting each image to grayscale, making it possible for a mix of color and grayscale images to help the model generalize better.
The image below shows an example of this grayscale transformation applied.
<img width="759" alt="An Example of the ToGray Augmentation" src="https://github.com/ultralytics/docs/releases/download/0/albumentations-grayscale.avif">
### Contrast Limited Adaptive Histogram Equalization (CLAHE)
The CLAHE transformation in Albumentations applies Contrast Limited Adaptive Histogram Equalization (CLAHE), a technique that enhances image contrast by equalizing the histogram in localized regions (tiles) instead of across the whole image. CLAHE produces a balanced enhancement effect, avoiding the overly amplified contrast that can result from standard histogram equalization, especially in areas with initially low contrast.
Here are the parameters and values used in this integration:
- **clip_limit**: Controls the contrast enhancement range. Set to a default range of (1, 4), it determines the maximum contrast allowed in each tile. Higher values are used for more contrast but may also introduce noise.
- **tile_grid_size**: Defines the size of the grid of tiles, typically as (rows, columns). The default value is (8, 8), meaning the image is divided into an 8x8 grid. Smaller tile sizes provide more localized adjustments, while larger ones create effects closer to global equalization.
- **p**: The probability of applying CLAHE. Here, p=0.01 introduces the enhancement effect only 1% of the time, ensuring that contrast adjustments are applied sparingly for occasional variation in training images.
The image below shows an example of the CLAHE transformation applied.
<img width="760" alt="An Example of the CLAHE Augmentation" src="https://github.com/ultralytics/docs/releases/download/0/albumentations-CLAHE.avif">
## Keep Learning about Albumentations
If you are interested in learning more about Albumentations, check out the following resources for more in-depth instructions and examples:
- **[Albumentations Documentation](https://albumentations.ai/docs/)**: The official documentation provides a full range of supported transformations and advanced usage techniques.
- **[Ultralytics Albumentations Guide](https://docs.ultralytics.com/reference/data/augment/?h=albumentation#ultralytics.data.augment.Albumentations)**: Get a closer look at the details of the function that facilitate this integration.
- **[Albumentations GitHub Repository](https://github.com/albumentations-team/albumentations/)**: The repository includes examples, benchmarks, and discussions to help you get started with customizing augmentations.
## Key Takeaways
In this guide, we explored the key aspects of Albumentations, a great Python library for image augmentation. We discussed its wide range of transformations, optimized performance, and how you can use it in your next YOLO11 project.
Also, if you'd like to know more about other Ultralytics YOLO11 integrations, visit our [integration guide page](../integrations/index.md). You'll find valuable resources and insights there.

@ -57,6 +57,10 @@ Welcome to the Ultralytics Integrations page! This page provides an overview of
- [Weights & Biases (W&B)](weights-biases.md): Monitor experiments, visualize metrics, and foster reproducibility and collaboration on Ultralytics projects.
- [VS Code](vscode.md): An extension for VS Code that provides code snippets for accelerating development workflows with Ultralytics and also for anyone looking for examples to help learn or get started with Ultralytics.
- [Albumentations](albumentations.md): Enhance your Ultralytics models with powerful image augmentations to improve model robustness and generalization.
## Deployment Integrations
- [CoreML](coreml.md): CoreML, developed by [Apple](https://www.apple.com/), is a framework designed for efficiently integrating machine learning models into applications across iOS, macOS, watchOS, and tvOS, using Apple's hardware for effective and secure [model deployment](https://www.ultralytics.com/glossary/model-deployment).
@ -65,6 +69,8 @@ Welcome to the Ultralytics Integrations page! This page provides an overview of
- [NCNN](ncnn.md): Developed by [Tencent](http://www.tencent.com/), NCNN is an efficient [neural network](https://www.ultralytics.com/glossary/neural-network-nn) inference framework tailored for mobile devices. It enables direct deployment of AI models into apps, optimizing performance across various mobile platforms.
- [MNN](mnn.md): Developed by [Alibaba](https://www.alibabagroup.com/), MNN is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models and has industry-leading performance for inference and training on-device.
- [Neural Magic](neural-magic.md): Leverage Quantization Aware Training (QAT) and pruning techniques to optimize Ultralytics models for superior performance and leaner size.
- [ONNX](onnx.md): An open-source format created by [Microsoft](https://www.microsoft.com/) for facilitating the transfer of AI models between various frameworks, enhancing the versatility and deployment flexibility of Ultralytics models.
@ -87,8 +93,6 @@ Welcome to the Ultralytics Integrations page! This page provides an overview of
- [TorchScript](torchscript.md): Developed as part of the [PyTorch](https://pytorch.org/) framework, TorchScript enables efficient execution and deployment of machine learning models in various production environments without the need for Python dependencies.
- [VS Code](vscode.md): An extension for VS Code that provides code snippets for accelerating development workflows with Ultralytics and also for anyone looking for examples to help learn or get started with Ultralytics.
### Export Formats
We also support a variety of model export formats for deployment in different environments. Here are the available formats:

@ -0,0 +1,342 @@
---
comments: true
description: Optimize YOLO11 models for mobile and embedded devices by exporting to MNN format.
keywords: Ultralytics, YOLO11, MNN, model export, machine learning, deployment, mobile, embedded systems, deep learning, AI models
---
# MNN Export for YOLO11 Models and Deploy
## MNN
<p align="center">
<img width="100%" src="https://mnn-docs.readthedocs.io/en/latest/_images/architecture.png" alt="MNN architecture">
</p>
[MNN](https://github.com/alibaba/MNN) is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models and has industry-leading performance for inference and training on-device. At present, MNN has been integrated into more than 30 apps of Alibaba Inc, such as Taobao, Tmall, Youku, DingTalk, Xianyu, etc., covering more than 70 usage scenarios such as live broadcast, short video capture, search recommendation, product searching by image, interactive marketing, equity distribution, security risk control. In addition, MNN is also used on embedded devices, such as IoT.
## Export to MNN: Converting Your YOLO11 Model
You can expand model compatibility and deployment flexibility by converting YOLO11 models to MNN format.
### Installation
To install the required packages, run:
!!! tip "Installation"
=== "CLI"
```bash
# Install the required package for YOLO11 and MNN
pip install ultralytics
pip install MNN
```
### Usage
Before diving into the usage instructions, it's important to note that while all [Ultralytics YOLO11 models](../models/index.md) are available for exporting, you can ensure that the model you select supports export functionality [here](../modes/export.md).
!!! example "Usage"
=== "Python"
```python
from ultralytics import YOLO
# Load the YOLO11 model
model = YOLO("yolo11n.pt")
# Export the model to MNN format
model.export(format="mnn") # creates 'yolo11n.mnn'
# Load the exported MNN model
mnn_model = YOLO("yolo11n.mnn")
# Run inference
results = mnn_model("https://ultralytics.com/images/bus.jpg")
```
=== "CLI"
```bash
# Export a YOLO11n PyTorch model to MNN format
yolo export model=yolo11n.pt format=mnn # creates 'yolo11n.mnn'
# Run inference with the exported model
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg'
```
For more details about supported export options, visit the [Ultralytics documentation page on deployment options](../guides/model-deployment-options.md).
### MNN-Only Inference
A function that relies solely on MNN for YOLO11 inference and preprocessing is implemented, providing both Python and C++ versions for easy deployment in any scenario.
!!! example "MNN"
=== "Python"
```python
import argparse
import MNN
import MNN.cv as cv2
import MNN.numpy as np
def inference(model, img, precision, backend, thread):
config = {}
config["precision"] = precision
config["backend"] = backend
config["numThread"] = thread
rt = MNN.nn.create_runtime_manager((config,))
# net = MNN.nn.load_module_from_file(model, ['images'], ['output0'], runtime_manager=rt)
net = MNN.nn.load_module_from_file(model, [], [], runtime_manager=rt)
original_image = cv2.imread(img)
ih, iw, _ = original_image.shape
length = max((ih, iw))
scale = length / 640
image = np.pad(original_image, [[0, length - ih], [0, length - iw], [0, 0]], "constant")
image = cv2.resize(
image, (640, 640), 0.0, 0.0, cv2.INTER_LINEAR, -1, [0.0, 0.0, 0.0], [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0]
)
input_var = np.expand_dims(image, 0)
input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4)
output_var = net.forward(input_var)
output_var = MNN.expr.convert(output_var, MNN.expr.NCHW)
output_var = output_var.squeeze()
# output_var shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
cx = output_var[0]
cy = output_var[1]
w = output_var[2]
h = output_var[3]
probs = output_var[4:]
# [cx, cy, w, h] -> [y0, x0, y1, x1]
x0 = cx - w * 0.5
y0 = cy - h * 0.5
x1 = cx + w * 0.5
y1 = cy + h * 0.5
boxes = np.stack([x0, y0, x1, y1], axis=1)
# get max prob and idx
scores = np.max(probs, 0)
class_ids = np.argmax(probs, 0)
result_ids = MNN.expr.nms(boxes, scores, 100, 0.45, 0.25)
print(result_ids.shape)
# nms result box, score, ids
result_boxes = boxes[result_ids]
result_scores = scores[result_ids]
result_class_ids = class_ids[result_ids]
for i in range(len(result_boxes)):
x0, y0, x1, y1 = result_boxes[i].read_as_tuple()
y0 = int(y0 * scale)
y1 = int(y1 * scale)
x0 = int(x0 * scale)
x1 = int(x1 * scale)
print(result_class_ids[i])
cv2.rectangle(original_image, (x0, y0), (x1, y1), (0, 0, 255), 2)
cv2.imwrite("res.jpg", original_image)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True, help="the yolo11 model path")
parser.add_argument("--img", type=str, required=True, help="the input image path")
parser.add_argument("--precision", type=str, default="normal", help="inference precision: normal, low, high, lowBF")
parser.add_argument(
"--backend",
type=str,
default="CPU",
help="inference backend: CPU, OPENCL, OPENGL, NN, VULKAN, METAL, TRT, CUDA, HIAI",
)
parser.add_argument("--thread", type=int, default=4, help="inference using thread: int")
args = parser.parse_args()
inference(args.model, args.img, args.precision, args.backend, args.thread)
```
=== "CPP"
```cpp
#include <stdio.h>
#include <MNN/ImageProcess.hpp>
#include <MNN/expr/Module.hpp>
#include <MNN/expr/Executor.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/Executor.hpp>
#include <cv/cv.hpp>
using namespace MNN;
using namespace MNN::Express;
using namespace MNN::CV;
int main(int argc, const char* argv[]) {
if (argc < 3) {
MNN_PRINT("Usage: ./yolo11_demo.out model.mnn input.jpg [forwardType] [precision] [thread]\n");
return 0;
}
int thread = 4;
int precision = 0;
int forwardType = MNN_FORWARD_CPU;
if (argc >= 4) {
forwardType = atoi(argv[3]);
}
if (argc >= 5) {
precision = atoi(argv[4]);
}
if (argc >= 6) {
thread = atoi(argv[5]);
}
MNN::ScheduleConfig sConfig;
sConfig.type = static_cast<MNNForwardType>(forwardType);
sConfig.numThread = thread;
BackendConfig bConfig;
bConfig.precision = static_cast<BackendConfig::PrecisionMode>(precision);
sConfig.backendConfig = &bConfig;
std::shared_ptr<Executor::RuntimeManager> rtmgr = std::shared_ptr<Executor::RuntimeManager>(Executor::RuntimeManager::createRuntimeManager(sConfig));
if(rtmgr == nullptr) {
MNN_ERROR("Empty RuntimeManger\n");
return 0;
}
rtmgr->setCache(".cachefile");
std::shared_ptr<Module> net(Module::load(std::vector<std::string>{}, std::vector<std::string>{}, argv[1], rtmgr));
auto original_image = imread(argv[2]);
auto dims = original_image->getInfo()->dim;
int ih = dims[0];
int iw = dims[1];
int len = ih > iw ? ih : iw;
float scale = len / 640.0;
std::vector<int> padvals { 0, len - ih, 0, len - iw, 0, 0 };
auto pads = _Const(static_cast<void*>(padvals.data()), {3, 2}, NCHW, halide_type_of<int>());
auto image = _Pad(original_image, pads, CONSTANT);
image = resize(image, Size(640, 640), 0, 0, INTER_LINEAR, -1, {0., 0., 0.}, {1./255., 1./255., 1./255.});
auto input = _Unsqueeze(image, {0});
input = _Convert(input, NC4HW4);
auto outputs = net->onForward({input});
auto output = _Convert(outputs[0], NCHW);
output = _Squeeze(output);
// output shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
auto cx = _Gather(output, _Scalar<int>(0));
auto cy = _Gather(output, _Scalar<int>(1));
auto w = _Gather(output, _Scalar<int>(2));
auto h = _Gather(output, _Scalar<int>(3));
std::vector<int> startvals { 4, 0 };
auto start = _Const(static_cast<void*>(startvals.data()), {2}, NCHW, halide_type_of<int>());
std::vector<int> sizevals { -1, -1 };
auto size = _Const(static_cast<void*>(sizevals.data()), {2}, NCHW, halide_type_of<int>());
auto probs = _Slice(output, start, size);
// [cx, cy, w, h] -> [y0, x0, y1, x1]
auto x0 = cx - w * _Const(0.5);
auto y0 = cy - h * _Const(0.5);
auto x1 = cx + w * _Const(0.5);
auto y1 = cy + h * _Const(0.5);
auto boxes = _Stack({x0, y0, x1, y1}, 1);
auto scores = _ReduceMax(probs, {0});
auto ids = _ArgMax(probs, 0);
auto result_ids = _Nms(boxes, scores, 100, 0.45, 0.25);
auto result_ptr = result_ids->readMap<int>();
auto box_ptr = boxes->readMap<float>();
auto ids_ptr = ids->readMap<int>();
auto score_ptr = scores->readMap<float>();
for (int i = 0; i < 100; i++) {
auto idx = result_ptr[i];
if (idx < 0) break;
auto x0 = box_ptr[idx * 4 + 0] * scale;
auto y0 = box_ptr[idx * 4 + 1] * scale;
auto x1 = box_ptr[idx * 4 + 2] * scale;
auto y1 = box_ptr[idx * 4 + 3] * scale;
auto class_idx = ids_ptr[idx];
auto score = score_ptr[idx];
rectangle(original_image, {x0, y0}, {x1, y1}, {0, 0, 255}, 2);
}
if (imwrite("res.jpg", original_image)) {
MNN_PRINT("result image write to `res.jpg`.\n");
}
rtmgr->updateCache();
return 0;
}
```
## Summary
In this guide, we introduce how to export the Ultralytics YOLO11 model to MNN and use MNN for inference.
For more usage, please refer to the [MNN documentation](https://mnn-docs.readthedocs.io/en/latest).
## FAQ
### How do I export Ultralytics YOLO11 models to MNN format?
To export your Ultralytics YOLO11 model to MNN format, follow these steps:
!!! example "Export"
=== "Python"
```python
from ultralytics import YOLO
# Load the YOLO11 model
model = YOLO("yolo11n.pt")
# Export to MNN format
model.export(format="mnn") # creates 'yolo11n.mnn' with fp32 weight
model.export(format="mnn", half=True) # creates 'yolo11n.mnn' with fp16 weight
model.export(format="mnn", int8=True) # creates 'yolo11n.mnn' with int8 weight
```
=== "CLI"
```bash
yolo export model=yolo11n.pt format=mnn # creates 'yolo11n.mnn' with fp32 weight
yolo export model=yolo11n.pt format=mnn half=True # creates 'yolo11n.mnn' with fp16 weight
yolo export model=yolo11n.pt format=mnn int8=True # creates 'yolo11n.mnn' with int8 weight
```
For detailed export options, check the [Export](../modes/export.md) page in the documentation.
### How do I predict with an exported YOLO11 MNN model?
To predict with an exported YOLO11 MNN model, use the `predict` function from the YOLO class.
!!! example "Predict"
=== "Python"
```python
from ultralytics import YOLO
# Load the YOLO11 MNN model
model = YOLO("yolo11n.mnn")
# Export to MNN format
results = mnn_model("https://ultralytics.com/images/bus.jpg") # predict with `fp32`
results = mnn_model("https://ultralytics.com/images/bus.jpg", half=True) # predict with `fp16` if device support
for result in results:
result.show() # display to screen
result.save(filename="result.jpg") # save to disk
```
=== "CLI"
```bash
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg' # predict with `fp32`
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg' --half=True # predict with `fp16` if device support
```
### What platforms are supported for MNN?
MNN is versatile and supports various platforms:
- **Mobile**: Android, iOS, Harmony.
- **Embedded Systems and IoT Devices**: Devices like Raspberry Pi and NVIDIA Jetson.
- **Desktop and Servers**: Linux, Windows, and macOS.
### How can I deploy Ultralytics YOLO11 MNN models on Mobile Devices?
To deploy your YOLO11 models on Mobile devices:
1. **Build for Android**: Follow the [MNN Android](https://github.com/alibaba/MNN/tree/master/project/android).
2. **Build for iOS**: Follow the [MNN iOS](https://github.com/alibaba/MNN/tree/master/project/ios).
3. **Build for Harmony**: Follow the [MNN Harmony](https://github.com/alibaba/MNN/tree/master/project/harmony).

@ -12,4 +12,5 @@
| [TF Edge TPU](../integrations/edge-tpu.md) | `edgetpu` | `{{ model_name or "yolo11n" }}_edgetpu.tflite` | ✅ | `imgsz` |
| [TF.js](../integrations/tfjs.md) | `tfjs` | `{{ model_name or "yolo11n" }}_web_model/` | ✅ | `imgsz`, `half`, `int8`, `batch` |
| [PaddlePaddle](../integrations/paddlepaddle.md) | `paddle` | `{{ model_name or "yolo11n" }}_paddle_model/` | ✅ | `imgsz`, `batch` |
| [MNN](../integrations/mnn.md) | `mnn` | `{{ model_name or "yolo11n" }}.mnn` | ✅ | `imgsz`, `batch`, `int8`, `half` |
| [NCNN](../integrations/ncnn.md) | `ncnn` | `{{ model_name or "yolo11n" }}_ncnn_model/` | ✅ | `imgsz`, `half`, `batch` |

@ -43,7 +43,7 @@
| `kobj` | `2.0` | Weight of the keypoint objectness loss in pose estimation models, balancing detection confidence with pose accuracy. |
| `label_smoothing` | `0.0` | Applies label smoothing, softening hard labels to a mix of the target label and a uniform distribution over labels, can improve generalization. |
| `nbs` | `64` | Nominal batch size for normalization of loss. |
| `overlap_mask` | `True` | Determines whether segmentation masks should overlap during training, applicable in [instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation) tasks. |
| `overlap_mask` | `True` | Determines whether object masks should be merged into a single mask for training, or kept separate for each object. In case of overlap, the smaller mask is overlayed on top of the larger mask during merge. |
| `mask_ratio` | `4` | Downsample ratio for segmentation masks, affecting the resolution of masks used during training. |
| `dropout` | `0.0` | Dropout rate for regularization in classification tasks, preventing overfitting by randomly omitting units during training. |
| `val` | `True` | Enables validation during training, allowing for periodic evaluation of model performance on a separate dataset. |

@ -250,15 +250,20 @@ To auto-annotate your dataset using SAM 2, follow this example:
```python
from ultralytics.data.annotator import auto_annotate
auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model="sam2_b.pt")
auto_annotate(data="path/to/images", det_model="yolo11x.pt", sam_model="sam2_b.pt")
```
| Argument | Type | Description | Default |
| ------------ | ----------------------- | ------------------------------------------------------------------------------------------------------- | -------------- |
| `data` | `str` | Path to a folder containing images to be annotated. | |
| `det_model` | `str`, optional | Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. | `'yolov8x.pt'` |
| `det_model` | `str`, optional | Pre-trained YOLO detection model. Defaults to 'yolo11x.pt'. | `'yolo11x.pt'` |
| `sam_model` | `str`, optional | Pre-trained SAM 2 segmentation model. Defaults to 'sam2_b.pt'. | `'sam2_b.pt'` |
| `device` | `str`, optional | Device to run the models on. Defaults to an empty string (CPU or GPU, if available). | |
| `conf` | `float`, optional | Confidence threshold for detection model; default is 0.25. | `0.25` |
| `iou` | `float`, optional | IoU threshold for filtering overlapping boxes in detection results; default is 0.45. | `0.45` |
| `imgsz` | `int`, optional | Input image resize dimension; default is 640. | `640` |
| `max_det` | `int`, optional | Limits detections per image to control outputs in dense scenes. | `300` |
| `classes` | `list`, optional | Filters predictions to specified class IDs, returning only relevant detections. | `None` |
| `output_dir` | `str`, `None`, optional | Directory to save the annotated results. Defaults to a 'labels' folder in the same directory as 'data'. | `None` |
This function facilitates the rapid creation of high-quality segmentation datasets, ideal for researchers and developers aiming to accelerate their projects.

@ -205,15 +205,20 @@ To auto-annotate your dataset with the Ultralytics framework, use the `auto_anno
```python
from ultralytics.data.annotator import auto_annotate
auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model="sam_b.pt")
auto_annotate(data="path/to/images", det_model="yolo11x.pt", sam_model="sam_b.pt")
```
| Argument | Type | Description | Default |
| ------------ | --------------------- | ------------------------------------------------------------------------------------------------------- | -------------- |
| `data` | `str` | Path to a folder containing images to be annotated. | |
| `det_model` | `str`, optional | Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. | `'yolov8x.pt'` |
| `det_model` | `str`, optional | Pre-trained YOLO detection model. Defaults to 'yolo11x.pt'. | `'yolo11x.pt'` |
| `sam_model` | `str`, optional | Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'. | `'sam_b.pt'` |
| `device` | `str`, optional | Device to run the models on. Defaults to an empty string (CPU or GPU, if available). | |
| `conf` | `float`, optional | Confidence threshold for detection model; default is 0.25. | `0.25` |
| `iou` | `float`, optional | IoU threshold for filtering overlapping boxes in detection results; default is 0.45. | `0.45` |
| `imgsz` | `int`, optional | Input image resize dimension; default is 640. | `640` |
| `max_det` | `int`, optional | Limits detections per image to control outputs in dense scenes. | `300` |
| `classes` | `list`, optional | Filters predictions to specified class IDs, returning only relevant detections. | `None` |
| `output_dir` | `str`, None, optional | Directory to save the annotated results. Defaults to a 'labels' folder in the same directory as 'data'. | `None` |
The `auto_annotate` function takes the path to your images, with optional arguments for specifying the pre-trained detection and SAM segmentation models, the device to run the models on, and the output directory for saving the annotated results.

@ -8,10 +8,6 @@ keywords: YOLO11, state-of-the-art object detection, YOLO series, Ultralytics, c
## Overview
!!! tip "Ultralytics YOLO11 Publication"
Ultralytics has not published a formal research paper for YOLO11 due to the rapidly evolving nature of the models. We focus on advancing the technology and making it easier to use, rather than producing static documentation. For the most up-to-date information on YOLO architecture, features, and usage, please refer to our [GitHub repository](https://github.com/ultralytics/ultralytics) and [documentation](https://docs.ultralytics.com).
YOLO11 is the latest iteration in the [Ultralytics](https://www.ultralytics.com/) YOLO series of real-time object detectors, redefining what's possible with cutting-edge [accuracy](https://www.ultralytics.com/glossary/accuracy), speed, and efficiency. Building upon the impressive advancements of previous YOLO versions, YOLO11 introduces significant improvements in architecture and training methods, making it a versatile choice for a wide range of [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) tasks.
![Ultralytics YOLO11 Comparison Plots](https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png)
@ -132,6 +128,10 @@ Note that the example below is for YOLO11 [Detect](../tasks/detect.md) models fo
## Citations and Acknowledgements
!!! tip "Ultralytics YOLO11 Publication"
Ultralytics has not published a formal research paper for YOLO11 due to the rapidly evolving nature of the models. We focus on advancing the technology and making it easier to use, rather than producing static documentation. For the most up-to-date information on YOLO architecture, features, and usage, please refer to our [GitHub repository](https://github.com/ultralytics/ultralytics) and [documentation](https://docs.ultralytics.com).
If you use YOLO11 or any other software from this repository in your work, please cite it using the following format:
!!! quote ""

@ -6,10 +6,6 @@ keywords: YOLOv5, YOLOv5u, object detection, Ultralytics, anchor-free, pre-train
# Ultralytics YOLOv5
!!! tip "Ultralytics YOLOv5 Publication"
Ultralytics has not published a formal research paper for YOLOv5 due to the rapidly evolving nature of the models. We focus on advancing the technology and making it easier to use, rather than producing static documentation. For the most up-to-date information on YOLO architecture, features, and usage, please refer to our [GitHub repository](https://github.com/ultralytics/ultralytics) and [documentation](https://docs.ultralytics.com).
## Overview
YOLOv5u represents an advancement in [object detection](https://www.ultralytics.com/glossary/object-detection) methodologies. Originating from the foundational architecture of the [YOLOv5](https://github.com/ultralytics/yolov5) model developed by Ultralytics, YOLOv5u integrates the anchor-free, objectness-free split head, a feature previously introduced in the [YOLOv8](yolov8.md) models. This adaptation refines the model's architecture, leading to an improved accuracy-speed tradeoff in object detection tasks. Given the empirical results and its derived features, YOLOv5u provides an efficient alternative for those seeking robust solutions in both research and practical applications.
@ -96,6 +92,10 @@ This example provides simple YOLOv5 training and inference examples. For full do
## Citations and Acknowledgements
!!! tip "Ultralytics YOLOv5 Publication"
Ultralytics has not published a formal research paper for YOLOv5 due to the rapidly evolving nature of the models. We focus on advancing the technology and making it easier to use, rather than producing static documentation. For the most up-to-date information on YOLO architecture, features, and usage, please refer to our [GitHub repository](https://github.com/ultralytics/ultralytics) and [documentation](https://docs.ultralytics.com).
If you use YOLOv5 or YOLOv5u in your research, please cite the Ultralytics YOLOv5 repository as follows:
!!! quote ""

@ -6,10 +6,6 @@ keywords: YOLOv8, real-time object detection, YOLO series, Ultralytics, computer
# Ultralytics YOLOv8
!!! tip "Ultralytics YOLOv8 Publication"
Ultralytics has not published a formal research paper for YOLOv8 due to the rapidly evolving nature of the models. We focus on advancing the technology and making it easier to use, rather than producing static documentation. For the most up-to-date information on YOLO architecture, features, and usage, please refer to our [GitHub repository](https://github.com/ultralytics/ultralytics) and [documentation](https://docs.ultralytics.com).
## Overview
YOLOv8 is the latest iteration in the YOLO series of real-time object detectors, offering cutting-edge performance in terms of accuracy and speed. Building upon the advancements of previous YOLO versions, YOLOv8 introduces new features and optimizations that make it an ideal choice for various [object detection](https://www.ultralytics.com/glossary/object-detection) tasks in a wide range of applications.
@ -169,6 +165,10 @@ Note the below example is for YOLOv8 [Detect](../tasks/detect.md) models for obj
## Citations and Acknowledgements
!!! tip "Ultralytics YOLOv8 Publication"
Ultralytics has not published a formal research paper for YOLOv8 due to the rapidly evolving nature of the models. We focus on advancing the technology and making it easier to use, rather than producing static documentation. For the most up-to-date information on YOLO architecture, features, and usage, please refer to our [GitHub repository](https://github.com/ultralytics/ultralytics) and [documentation](https://docs.ultralytics.com).
If you use the YOLOv8 model or any other software from this repository in your work, please cite it using the following format:
!!! quote ""

@ -8,6 +8,28 @@ keywords: model benchmarking, YOLO11, Ultralytics, performance evaluation, expor
<img width="1024" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-ecosystem-integrations.avif" alt="Ultralytics YOLO ecosystem and integrations">
## Benchmark Visualization
<script src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script>
!!! tip "Refresh Browser"
You may need to refresh the page to view the graphs correctly due to potential cookie issues.
<div style="display: flex; align-items: flex-start;">
<div style="margin-right: 20px;">
<label><input type="checkbox" name="algorithm" value="YOLO11" checked><span>Ultralytics YOLO11</span></label><br>
<label><input type="checkbox" name="algorithm" value="YOLOv6" checked><span>YOLOv6</span></label><br>
<label><input type="checkbox" name="algorithm" value="YOLOv7" checked><span>YOLOv7</span></label><br>
<label><input type="checkbox" name="algorithm" value="YOLOv10" checked><span>YOLOv10</span></label><br>
<label><input type="checkbox" name="algorithm" value="YOLOv9" checked><span>YOLOv9</span></label><br>
<label><input type="checkbox" name="algorithm" value="YOLOv8" checked><span>Ultralytics YOLOv8</span></label><br>
<label><input type="checkbox" name="algorithm" value="PPYOLOE" checked><span>PPYOLOE</span></label><br>
<label><input type="checkbox" name="algorithm" value="YOLOv5" checked><span>Ultralytics YOLOv5</span></label>
</div>
<div style="flex-grow: 1;"><canvas id="chart"></canvas></div> <!-- Canva for plotting benchmarks -->
</div>
## Introduction
Once your model is trained and validated, the next logical step is to evaluate its performance in various real-world scenarios. Benchmark mode in Ultralytics YOLO11 serves this purpose by providing a robust framework for assessing the speed and [accuracy](https://www.ultralytics.com/glossary/accuracy) of your model across a range of export formats.

@ -1,7 +1,7 @@
---
comments: true
description: Learn how to efficiently train object detection models using YOLO11 with comprehensive instructions on settings, augmentation, and hardware utilization.
keywords: Ultralytics, YOLO11, model training, deep learning, object detection, GPU training, dataset augmentation, hyperparameter tuning, model performance, M1 M2 training
keywords: Ultralytics, YOLO11, model training, deep learning, object detection, GPU training, dataset augmentation, hyperparameter tuning, model performance, apple silicon training
---
# Model Training with Ultralytics YOLO
@ -107,11 +107,11 @@ Multi-GPU training allows for more efficient utilization of available hardware r
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640 device=0,1
```
### Apple M1 and M2 MPS Training
### Apple Silicon MPS Training
With the support for Apple M1 and M2 chips integrated in the Ultralytics YOLO models, it's now possible to train your models on devices utilizing the powerful Metal Performance Shaders (MPS) framework. The MPS offers a high-performance way of executing computation and image processing tasks on Apple's custom silicon.
With the support for Apple silicon chips integrated in the Ultralytics YOLO models, it's now possible to train your models on devices utilizing the powerful Metal Performance Shaders (MPS) framework. The MPS offers a high-performance way of executing computation and image processing tasks on Apple's custom silicon.
To enable training on Apple M1 and M2 chips, you should specify 'mps' as your device when initiating the training process. Below is an example of how you could do this in Python and via the command line:
To enable training on Apple silicon chips, you should specify 'mps' as your device when initiating the training process. Below is an example of how you could do this in Python and via the command line:
!!! example "MPS Training Example"
@ -134,7 +134,7 @@ To enable training on Apple M1 and M2 chips, you should specify 'mps' as your de
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640 device=mps
```
While leveraging the computational power of the M1/M2 chips, this enables more efficient processing of the training tasks. For more detailed guidance and advanced configuration options, please refer to the [PyTorch MPS documentation](https://pytorch.org/docs/stable/notes/mps.html).
While leveraging the computational power of the Apple silicon chips, this enables more efficient processing of the training tasks. For more detailed guidance and advanced configuration options, please refer to the [PyTorch MPS documentation](https://pytorch.org/docs/stable/notes/mps.html).
### Resuming Interrupted Trainings
@ -335,9 +335,9 @@ To resume training from an interrupted session, set the `resume` argument to `Tr
Check the section on [Resuming Interrupted Trainings](#resuming-interrupted-trainings) for more information.
### Can I train YOLO11 models on Apple M1 and M2 chips?
### Can I train YOLO11 models on Apple silicon chips?
Yes, Ultralytics YOLO11 supports training on Apple M1 and M2 chips utilizing the Metal Performance Shaders (MPS) framework. Specify 'mps' as your training device.
Yes, Ultralytics YOLO11 supports training on Apple silicon chips utilizing the Metal Performance Shaders (MPS) framework. Specify 'mps' as your training device.
!!! example "MPS Training Example"
@ -349,7 +349,7 @@ Yes, Ultralytics YOLO11 supports training on Apple M1 and M2 chips utilizing the
# Load a pretrained model
model = YOLO("yolo11n.pt")
# Train the model on M1/M2 chip
# Train the model on Apple silicon chip (M1/M2/M3/M4)
results = model.train(data="coco8.yaml", epochs=100, imgsz=640, device="mps")
```
@ -359,7 +359,7 @@ Yes, Ultralytics YOLO11 supports training on Apple M1 and M2 chips utilizing the
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640 device=mps
```
For more details, refer to the [Apple M1 and M2 MPS Training](#apple-m1-and-m2-mps-training) section.
For more details, refer to the [Apple Silicon MPS Training](#apple-silicon-mps-training) section.
### What are the common training settings, and how do I configure them?

@ -47,6 +47,10 @@ keywords: Ultralytics, YOLO, configuration, cfg2dict, get_cfg, check_cfg, save_d
<br><br><hr><br>
## ::: ultralytics.cfg.handle_yolo_solutions
<br><br><hr><br>
## ::: ultralytics.cfg.handle_streamlit_inference
<br><br><hr><br>

@ -14,21 +14,39 @@ Ultralytics Solutions provide cutting-edge applications of YOLO models, offering
Here's our curated list of Ultralytics solutions that can be used to create awesome [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) projects.
- [Object Counting](../guides/object-counting.md) 🚀 NEW: Learn to perform real-time object counting with YOLO11. Gain the expertise to accurately count objects in live video streams.
- [Object Cropping](../guides/object-cropping.md) 🚀 NEW: Master object cropping with YOLO11 for precise extraction of objects from images and videos.
- [Object Blurring](../guides/object-blurring.md) 🚀 NEW: Apply object blurring using YOLO11 to protect privacy in image and video processing.
- [Workouts Monitoring](../guides/workouts-monitoring.md) 🚀 NEW: Discover how to monitor workouts using YOLO11. Learn to track and analyze various fitness routines in real time.
- [Objects Counting in Regions](../guides/region-counting.md) 🚀 NEW: Count objects in specific regions using YOLO11 for accurate detection in varied areas.
- [Security Alarm System](../guides/security-alarm-system.md) 🚀 NEW: Create a security alarm system with YOLO11 that triggers alerts upon detecting new objects. Customize the system to fit your specific needs.
- [Heatmaps](../guides/heatmaps.md) 🚀 NEW: Utilize detection heatmaps to visualize data intensity across a matrix, providing clear insights in computer vision tasks.
- [Object Counting](../guides/object-counting.md) 🚀: Learn to perform real-time object counting with YOLO11. Gain the expertise to accurately count objects in live video streams.
- [Object Cropping](../guides/object-cropping.md) 🚀: Master object cropping with YOLO11 for precise extraction of objects from images and videos.
- [Object Blurring](../guides/object-blurring.md) 🚀: Apply object blurring using YOLO11 to protect privacy in image and video processing.
- [Workouts Monitoring](../guides/workouts-monitoring.md) 🚀: Discover how to monitor workouts using YOLO11. Learn to track and analyze various fitness routines in real time.
- [Objects Counting in Regions](../guides/region-counting.md) 🚀: Count objects in specific regions using YOLO11 for accurate detection in varied areas.
- [Security Alarm System](../guides/security-alarm-system.md) 🚀: Create a security alarm system with YOLO11 that triggers alerts upon detecting new objects. Customize the system to fit your specific needs.
- [Heatmaps](../guides/heatmaps.md) 🚀: Utilize detection heatmaps to visualize data intensity across a matrix, providing clear insights in computer vision tasks.
- [Instance Segmentation with Object Tracking](../guides/instance-segmentation-and-tracking.md) 🚀 NEW: Implement [instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation) and object tracking with YOLO11 to achieve precise object boundaries and continuous monitoring.
- [VisionEye View Objects Mapping](../guides/vision-eye.md) 🚀 NEW: Develop systems that mimic human eye focus on specific objects, enhancing the computer's ability to discern and prioritize details.
- [Speed Estimation](../guides/speed-estimation.md) 🚀 NEW: Estimate object speed using YOLO11 and object tracking techniques, crucial for applications like autonomous vehicles and traffic monitoring.
- [Distance Calculation](../guides/distance-calculation.md) 🚀 NEW: Calculate distances between objects using [bounding box](https://www.ultralytics.com/glossary/bounding-box) centroids in YOLO11, essential for spatial analysis.
- [Queue Management](../guides/queue-management.md) 🚀 NEW: Implement efficient queue management systems to minimize wait times and improve productivity using YOLO11.
- [Parking Management](../guides/parking-management.md) 🚀 NEW: Organize and direct vehicle flow in parking areas with YOLO11, optimizing space utilization and user experience.
- [VisionEye View Objects Mapping](../guides/vision-eye.md) 🚀: Develop systems that mimic human eye focus on specific objects, enhancing the computer's ability to discern and prioritize details.
- [Speed Estimation](../guides/speed-estimation.md) 🚀: Estimate object speed using YOLO11 and object tracking techniques, crucial for applications like autonomous vehicles and traffic monitoring.
- [Distance Calculation](../guides/distance-calculation.md) 🚀: Calculate distances between objects using [bounding box](https://www.ultralytics.com/glossary/bounding-box) centroids in YOLO11, essential for spatial analysis.
- [Queue Management](../guides/queue-management.md) 🚀: Implement efficient queue management systems to minimize wait times and improve productivity using YOLO11.
- [Parking Management](../guides/parking-management.md) 🚀: Organize and direct vehicle flow in parking areas with YOLO11, optimizing space utilization and user experience.
- [Analytics](../guides/analytics.md) 📊 NEW: Conduct comprehensive data analysis to discover patterns and make informed decisions, leveraging YOLO11 for descriptive, predictive, and prescriptive analytics.
- [Live Inference with Streamlit](../guides/streamlit-live-inference.md) 🚀 NEW: Leverage the power of YOLO11 for real-time [object detection](https://www.ultralytics.com/glossary/object-detection) directly through your web browser with a user-friendly Streamlit interface.
- [Live Inference with Streamlit](../guides/streamlit-live-inference.md) 🚀: Leverage the power of YOLO11 for real-time [object detection](https://www.ultralytics.com/glossary/object-detection) directly through your web browser with a user-friendly Streamlit interface.
## Solutions Usage
!!! tip "Command Info"
`yolo SOLUTIONS SOLUTION_NAME ARGS`
- **SOLUTIONS** is a required keyword.
- **SOLUTION_NAME** (optional) is one of: `['count', 'heatmap', 'queue', 'speed', 'workout', 'analytics']`.
- **ARGS** (optional) are custom `arg=value` pairs, such as `show_in=True`, to override default settings.
=== "CLI"
```bash
yolo solutions count show=True # for object counting
yolo solutions source="path/to/video/file.mp4" # specify video file path
```
## Contribute to Our Solutions

@ -5,8 +5,8 @@
avatar: https://avatars.githubusercontent.com/u/116908874?v=4
username: jk4e
1185102784@qq.com:
avatar: null
username: null
avatar: https://avatars.githubusercontent.com/u/61612323?v=4
username: Laughing-q
130829914+IvorZhu331@users.noreply.github.com:
avatar: https://avatars.githubusercontent.com/u/130829914?v=4
username: IvorZhu331
@ -25,6 +25,9 @@
17316848+maianumerosky@users.noreply.github.com:
avatar: https://avatars.githubusercontent.com/u/17316848?v=4
username: maianumerosky
25704330+JairajJangle@users.noreply.github.com:
avatar: https://avatars.githubusercontent.com/u/25704330?v=4
username: JairajJangle
32206511+Y-T-G@users.noreply.github.com:
avatar: https://avatars.githubusercontent.com/u/32206511?v=4
username: Y-T-G
@ -40,6 +43,9 @@
40165666+berry-ding@users.noreply.github.com:
avatar: https://avatars.githubusercontent.com/u/40165666?v=4
username: berry-ding
44016758+M-Amrollahi@users.noreply.github.com:
avatar: https://avatars.githubusercontent.com/u/44016758?v=4
username: M-Amrollahi
46103969+inisis@users.noreply.github.com:
avatar: https://avatars.githubusercontent.com/u/46103969?v=4
username: inisis
@ -76,6 +82,9 @@
79740115+0xSynapse@users.noreply.github.com:
avatar: https://avatars.githubusercontent.com/u/79740115?v=4
username: 0xSynapse
8401806+wangzhaode@users.noreply.github.com:
avatar: https://avatars.githubusercontent.com/u/8401806?v=4
username: wangzhaode
91465467+lalayants@users.noreply.github.com:
avatar: https://avatars.githubusercontent.com/u/91465467?v=4
username: lalayants
@ -97,6 +106,9 @@ ayush.chaurarsia@gmail.com:
chr043416@gmail.com:
avatar: https://avatars.githubusercontent.com/u/62513924?v=4
username: RizwanMunawar
davis.justin@mssm.org:
avatar: https://avatars.githubusercontent.com/u/23462437?v=4
username: justincdavis
glenn.jocher@ultralytics.com:
avatar: https://avatars.githubusercontent.com/u/26833433?v=4
username: glenn-jocher
@ -137,8 +149,8 @@ rulosanti@gmail.com:
avatar: null
username: null
shuizhuyuanluo@126.com:
avatar: null
username: null
avatar: https://avatars.githubusercontent.com/u/171016?v=4
username: nihui
sometimesocrazy@gmail.com:
avatar: null
username: null
@ -154,3 +166,6 @@ web@ultralytics.com:
xinwang614@gmail.com:
avatar: https://avatars.githubusercontent.com/u/17264618?v=4
username: GreatV
zhaode.wzd@alibaba-inc.com:
avatar: https://avatars.githubusercontent.com/u/8401806?v=4
username: wangzhaode

@ -147,3 +147,94 @@ document.addEventListener("DOMContentLoaded", () => {
addInkeepWidget(); // initialize the widget
});
});
// This object contains the benchmark data for various object detection models.
const data = {
'YOLOv5': {s: {speed: 1.92, mAP: 37.4}, m: {speed: 4.03, mAP: 45.4}, l: {speed: 6.61, mAP: 49.0}, x: {speed: 11.89, mAP: 50.7}},
'YOLOv6': {n: {speed: 1.17, mAP: 37.5}, s: {speed: 2.66, mAP: 45.0}, m: {speed: 5.28, mAP: 50.0}, l: {speed: 8.95, mAP: 52.8}},
'YOLOv7': {l: {speed: 6.84, mAP: 51.4}, x: {speed: 11.57, mAP: 53.1}},
'YOLOv8': {n: {speed: 1.47, mAP: 37.3}, s: {speed: 2.66, mAP: 44.9}, m: {speed: 5.86, mAP: 50.2}, l: {speed: 9.06, mAP: 52.9}, x: {speed: 14.37, mAP: 53.9}},
'YOLOv9': {t: {speed: 2.30, mAP: 37.8}, s: {speed: 3.54, mAP: 46.5}, m: {speed: 6.43, mAP: 51.5}, c: {speed: 7.16, mAP: 52.8}, e: {speed: 16.77, mAP: 55.1}},
'YOLOv10': {n: {speed: 1.56, mAP: 39.5}, s: {speed: 2.66, mAP: 46.7}, m: {speed: 5.48, mAP: 51.3}, b: {speed: 6.54, mAP: 52.7}, l: {speed: 8.33, mAP: 53.3}, x: {speed: 12.2, mAP: 54.4}},
'PPYOLOE': {t: {speed: 2.84, mAP: 39.9}, s: {speed: 2.62, mAP: 43.7}, m: {speed: 5.56, mAP: 49.8}, l: {speed: 8.36, mAP: 52.9}, x: {speed: 14.3, mAP: 54.7}},
'YOLO11': {n: {speed: 1.55, mAP: 39.5}, s: {speed: 2.63, mAP: 47.0}, m: {speed: 5.27, mAP: 51.4}, l: {speed: 6.84, mAP: 53.2}, x: {speed: 12.49, mAP: 54.7}}
};
let chart = null; // chart variable will hold the reference to the current chart instance.
// This function is responsible for updating the benchmarks chart.
function updateChart() {
// If a chart instance already exists, destroy it.
if (chart) chart.destroy();
// Get the selected algorithms from the checkboxes.
const selectedAlgorithms = [...document.querySelectorAll('input[name="algorithm"]:checked')].map(e => e.value);
// Create the datasets for the selected algorithms.
const datasets = selectedAlgorithms.map((algorithm, index) => ({
label: algorithm, // Label for the data points in the legend.
data: Object.entries(data[algorithm]).map(([version, point]) => ({
x: point.speed, // Speed data points on the x-axis.
y: point.mAP, // mAP data points on the y-axis.
version: version.toUpperCase() // Store the version as additional data.
})),
fill: false, // Don't fill the chart.
borderColor: `hsl(${index * 90}, 70%, 50%)`, // Assign a unique color to each dataset.
tension: 0.3, // Smooth the line.
pointRadius: 5, // Increase the dot size.
pointHoverRadius: 10, // Increase the dot size on hover.
borderWidth: 2 // Set the line thickness.
}));
// If there are no selected algorithms, return without creating a new chart.
if (datasets.length === 0) return;
// Create a new chart instance.
chart = new Chart(document.getElementById('chart').getContext('2d'), {
type: 'line', // Set the chart type to line.
data: { datasets },
options: {
plugins: {
legend: { display: true, position: 'top', labels: {color: '#808080'} }, // Configure the legend.
tooltip: {
callbacks: {
label: (tooltipItem) => {
const { dataset, dataIndex } = tooltipItem;
const point = dataset.data[dataIndex];
return `${dataset.label}${point.version.toLowerCase()}: Speed = ${point.x}, mAP = ${point.y}`; // Custom tooltip label.
}
},
mode: 'nearest',
intersect: false
} // Configure the tooltip.
},
interaction: { mode: 'nearest', axis: 'x', intersect: false }, // Configure the interaction mode.
scales: {
x: {
type: 'linear', position: 'bottom',
title: { display: true, text: 'Latency T4 TensorRT10 FP16 (ms/img)', color: '#808080'}, // X-axis title.
grid: { color: '#e0e0e0' }, // Grid line color.
ticks: { color: '#808080' } // Tick label color.
},
y: {
title: { display: true, text: 'mAP', color: '#808080'}, // Y-axis title.
grid: { color: '#e0e0e0' }, // Grid line color.
ticks: { color: '#808080' } // Tick label color.
}
}
}
});
}
// Poll for Chart.js to load, then initialize checkboxes and chart
function initializeApp() {
if (typeof Chart !== 'undefined') {
document.querySelectorAll('input[name="algorithm"]').forEach(checkbox =>
checkbox.addEventListener('change', updateChart)
);
updateChart();
} else {
setTimeout(initializeApp, 100); // Retry every 100ms
}
}
document.addEventListener("DOMContentLoaded", initializeApp); // Initial chart rendering on page load

@ -8,7 +8,7 @@ This directory features a collection of real-world applications and walkthroughs
| ----------------------------------------------------------------------------------------------------------------------------------------- | ------------------ | ----------------------------------------------------------------------------------------- |
| [YOLO ONNX Detection Inference with C++](./YOLOv8-CPP-Inference) | C++/ONNX | [Justas Bartnykas](https://github.com/JustasBart) |
| [YOLO OpenCV ONNX Detection Python](./YOLOv8-OpenCV-ONNX-Python) | OpenCV/Python/ONNX | [Farid Inawan](https://github.com/frdteknikelektro) |
| [YOLOv8 .NET ONNX ImageSharp](https://github.com/dme-compunet/YOLOv8) | C#/ONNX/ImageSharp | [Compunet](https://github.com/dme-compunet) |
| [YOLO C# ONNX-Runtime](https://github.com/dme-compunet/YoloSharp) | .NET/ONNX-Runtime | [Compunet](https://github.com/dme-compunet) |
| [YOLO .Net ONNX Detection C#](https://www.nuget.org/packages/Yolov8.Net) | C# .Net | [Samuel Stainback](https://github.com/sstainba) |
| [YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream)](https://wiki.seeedstudio.com/YOLOv8-DeepStream-TRT-Jetson/) | Python | [Lakshantha](https://github.com/lakshanthad) |
| [YOLOv8 ONNXRuntime Python](./YOLOv8-ONNXRuntime) | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel) |
@ -18,9 +18,10 @@ This directory features a collection of real-world applications and walkthroughs
| [YOLOv8 Region Counter](https://github.com/RizwanMunawar/ultralytics/blob/main/examples/YOLOv8-Region-Counter/yolov8_region_counter.py) | Python | [Muhammad Rizwan Munawar](https://github.com/RizwanMunawar) |
| [YOLOv8 Segmentation ONNXRuntime Python](./YOLOv8-Segmentation-ONNXRuntime-Python) | Python/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
| [YOLOv8 LibTorch CPP](./YOLOv8-LibTorch-CPP-Inference) | C++/LibTorch | [Myyura](https://github.com/Myyura) |
| [YOLOv8 OpenCV INT8 TFLite Python](./YOLOv8-OpenCV-int8-tflite-Python) | Python | [Wamiq Raza](https://github.com/wamiqraza) |
| [YOLOv8 OpenCV INT8 TFLite Python](./YOLOv8-TFLite-Python) | Python | [Wamiq Raza](https://github.com/wamiqraza) |
| [YOLOv8 All Tasks ONNXRuntime Rust](./YOLOv8-ONNXRuntime-Rust) | Rust/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
| [YOLOv8 OpenVINO CPP](./YOLOv8-OpenVINO-CPP-Inference) | C++/OpenVINO | [Erlangga Yudi Pradana](https://github.com/rlggyp) |
| [YOLOv5-YOLO11 ONNXRuntime Rust](./YOLO-Series-ONNXRuntime-Rust) | Rust/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
### How to Contribute

@ -0,0 +1,12 @@
[package]
name = "YOLO-ONNXRuntime-Rust"
version = "0.1.0"
edition = "2021"
authors = ["Jamjamjon <xxyydzml@outlook.com>"]
[dependencies]
anyhow = "1.0.92"
clap = "4.5.20"
tracing = "0.1.40"
tracing-subscriber = "0.3.18"
usls = { version = "0.0.19", features = ["auto"] }

@ -0,0 +1,94 @@
# YOLO-Series ONNXRuntime Rust Demo for Core YOLO Tasks
This repository provides a Rust demo for key YOLO-Series tasks such as `Classification`, `Segmentation`, `Detection`, `Pose Detection`, and `OBB` using ONNXRuntime. It supports various YOLO models (v5 - 11) across multiple vision tasks.
## Introduction
- This example leverages the latest versions of both ONNXRuntime and YOLO models.
- We utilize the [usls](https://github.com/jamjamjon/usls/tree/main) crate to streamline YOLO model inference, providing efficient data loading, visualization, and optimized inference performance.
## Features
- **Extensive Model Compatibility**: Supports `YOLOv5`, `YOLOv6`, `YOLOv7`, `YOLOv8`, `YOLOv9`, `YOLOv10`, `YOLO11`, `YOLO-world`, `RTDETR`, and others, covering a wide range of YOLO versions.
- **Versatile Task Coverage**: Includes `Classification`, `Segmentation`, `Detection`, `Pose`, and `OBB`.
- **Precision Flexibility**: Works with `FP16` and `FP32` ONNX models.
- **Execution Providers**: Accelerated support for `CPU`, `CUDA`, `CoreML`, and `TensorRT`.
- **Dynamic Input Shapes**: Dynamically adjusts to variable `batch`, `width`, and `height` dimensions for flexible model input.
- **Flexible Data Loading**: The `DataLoader` handles images, folders, videos, and video streams.
- **Real-Time Display and Video Export**: `Viewer` provides real-time frame visualization and video export functions, similar to OpenCV’s `imshow()` and `imwrite()`.
- **Enhanced Annotation and Visualization**: The `Annotator` facilitates comprehensive result rendering, with support for bounding boxes (HBB), oriented bounding boxes (OBB), polygons, masks, keypoints, and text labels.
## Setup Instructions
### 1. ONNXRuntime Linking
<details>
<summary>You have two options to link the ONNXRuntime library:</summary>
- **Option 1: Manual Linking**
- For detailed setup, consult the [ONNX Runtime linking documentation](https://ort.pyke.io/setup/linking).
- **Linux or macOS**:
1. Download the ONNX Runtime package from the [Releases page](https://github.com/microsoft/onnxruntime/releases).
2. Set up the library path by exporting the `ORT_DYLIB_PATH` environment variable:
```shell
export ORT_DYLIB_PATH=/path/to/onnxruntime/lib/libonnxruntime.so.1.19.0
```
- **Option 2: Automatic Download**
- Use the `--features auto` flag to handle downloading automatically:
```shell
cargo run -r --example yolo --features auto
```
</details>
### 2. \[Optional\] Install CUDA, CuDNN, and TensorRT
- The CUDA execution provider requires CUDA version `12.x`.
- The TensorRT execution provider requires both CUDA `12.x` and TensorRT `10.x`.
### 3. \[Optional\] Install ffmpeg
To view video frames and save video inferences, install `rust-ffmpeg`. For instructions, see:
[https://github.com/zmwangx/rust-ffmpeg/wiki/Notes-on-building#dependencies](https://github.com/zmwangx/rust-ffmpeg/wiki/Notes-on-building#dependencies)
## Get Started
```Shell
# customized
cargo run -r -- --task detect --ver v8 --nc 6 --model xxx.onnx # YOLOv8
# Classify
cargo run -r -- --task classify --ver v5 --scale s --width 224 --height 224 --nc 1000 # YOLOv5
cargo run -r -- --task classify --ver v8 --scale n --width 224 --height 224 --nc 1000 # YOLOv8
cargo run -r -- --task classify --ver v11 --scale n --width 224 --height 224 --nc 1000 # YOLOv11
# Detect
cargo run -r -- --task detect --ver v5 --scale n # YOLOv5
cargo run -r -- --task detect --ver v6 --scale n # YOLOv6
cargo run -r -- --task detect --ver v7 --scale t # YOLOv7
cargo run -r -- --task detect --ver v8 --scale n # YOLOv8
cargo run -r -- --task detect --ver v9 --scale t # YOLOv9
cargo run -r -- --task detect --ver v10 --scale n # YOLOv10
cargo run -r -- --task detect --ver v11 --scale n # YOLOv11
cargo run -r -- --task detect --ver rtdetr --scale l # RTDETR
# Pose
cargo run -r -- --task pose --ver v8 --scale n # YOLOv8-Pose
cargo run -r -- --task pose --ver v11 --scale n # YOLOv11-Pose
# Segment
cargo run -r -- --task segment --ver v5 --scale n # YOLOv5-Segment
cargo run -r -- --task segment --ver v8 --scale n # YOLOv8-Segment
cargo run -r -- --task segment --ver v11 --scale n # YOLOv8-Segment
cargo run -r -- --task segment --ver v8 --model yolo/FastSAM-s-dyn-f16.onnx # FastSAM
# OBB
cargo run -r -- --ver v8 --task obb --scale n --width 1024 --height 1024 --source images/dota.png # YOLOv8-Obb
cargo run -r -- --ver v11 --task obb --scale n --width 1024 --height 1024 --source images/dota.png # YOLOv11-Obb
```
**`cargo run -- --help` for more options**
For more details, please refer to [usls-yolo](https://github.com/jamjamjon/usls/tree/main/examples/yolo).

@ -0,0 +1,236 @@
use anyhow::Result;
use clap::Parser;
use usls::{
models::YOLO, Annotator, DataLoader, Device, Options, Viewer, Vision, YOLOScale, YOLOTask,
YOLOVersion, COCO_SKELETONS_16,
};
#[derive(Parser, Clone)]
#[command(author, version, about, long_about = None)]
pub struct Args {
/// Path to the ONNX model
#[arg(long)]
pub model: Option<String>,
/// Input source path
#[arg(long, default_value_t = String::from("../../ultralytics/assets/bus.jpg"))]
pub source: String,
/// YOLO Task
#[arg(long, value_enum, default_value_t = YOLOTask::Detect)]
pub task: YOLOTask,
/// YOLO Version
#[arg(long, value_enum, default_value_t = YOLOVersion::V8)]
pub ver: YOLOVersion,
/// YOLO Scale
#[arg(long, value_enum, default_value_t = YOLOScale::N)]
pub scale: YOLOScale,
/// Batch size
#[arg(long, default_value_t = 1)]
pub batch_size: usize,
/// Minimum input width
#[arg(long, default_value_t = 224)]
pub width_min: isize,
/// Input width
#[arg(long, default_value_t = 640)]
pub width: isize,
/// Maximum input width
#[arg(long, default_value_t = 1024)]
pub width_max: isize,
/// Minimum input height
#[arg(long, default_value_t = 224)]
pub height_min: isize,
/// Input height
#[arg(long, default_value_t = 640)]
pub height: isize,
/// Maximum input height
#[arg(long, default_value_t = 1024)]
pub height_max: isize,
/// Number of classes
#[arg(long, default_value_t = 80)]
pub nc: usize,
/// Class confidence
#[arg(long)]
pub confs: Vec<f32>,
/// Enable TensorRT support
#[arg(long)]
pub trt: bool,
/// Enable CUDA support
#[arg(long)]
pub cuda: bool,
/// Enable CoreML support
#[arg(long)]
pub coreml: bool,
/// Use TensorRT half precision
#[arg(long)]
pub half: bool,
/// Device ID to use
#[arg(long, default_value_t = 0)]
pub device_id: usize,
/// Enable performance profiling
#[arg(long)]
pub profile: bool,
/// Disable contour drawing, for saving time
#[arg(long)]
pub no_contours: bool,
/// Show result
#[arg(long)]
pub view: bool,
/// Do not save output
#[arg(long)]
pub nosave: bool,
}
fn main() -> Result<()> {
let args = Args::parse();
// logger
if args.profile {
tracing_subscriber::fmt()
.with_max_level(tracing::Level::INFO)
.init();
}
// model path
let path = match &args.model {
None => format!(
"yolo/{}-{}-{}.onnx",
args.ver.name(),
args.scale.name(),
args.task.name()
),
Some(x) => x.to_string(),
};
// saveout
let saveout = match &args.model {
None => format!(
"{}-{}-{}",
args.ver.name(),
args.scale.name(),
args.task.name()
),
Some(x) => {
let p = std::path::PathBuf::from(&x);
p.file_stem().unwrap().to_str().unwrap().to_string()
}
};
// device
let device = if args.cuda {
Device::Cuda(args.device_id)
} else if args.trt {
Device::Trt(args.device_id)
} else if args.coreml {
Device::CoreML(args.device_id)
} else {
Device::Cpu(args.device_id)
};
// build options
let options = Options::new()
.with_model(&path)?
.with_yolo_version(args.ver)
.with_yolo_task(args.task)
.with_device(device)
.with_trt_fp16(args.half)
.with_ixx(0, 0, (1, args.batch_size as _, 4).into())
.with_ixx(0, 2, (args.height_min, args.height, args.height_max).into())
.with_ixx(0, 3, (args.width_min, args.width, args.width_max).into())
.with_confs(if args.confs.is_empty() {
&[0.2, 0.15]
} else {
&args.confs
})
.with_nc(args.nc)
.with_find_contours(!args.no_contours) // find contours or not
// .with_names(&COCO_CLASS_NAMES_80) // detection class names
// .with_names2(&COCO_KEYPOINTS_17) // keypoints class names
// .exclude_classes(&[0])
// .retain_classes(&[0, 5])
.with_profile(args.profile);
// build model
let mut model = YOLO::new(options)?;
// build dataloader
let dl = DataLoader::new(&args.source)?
.with_batch(model.batch() as _)
.build()?;
// build annotator
let annotator = Annotator::default()
.with_skeletons(&COCO_SKELETONS_16)
.without_masks(true) // no masks plotting when doing segment task
.with_bboxes_thickness(3)
.with_keypoints_name(false) // enable keypoints names
.with_saveout_subs(&["YOLO"])
.with_saveout(&saveout);
// build viewer
let mut viewer = if args.view {
Some(Viewer::new().with_delay(5).with_scale(1.).resizable(true))
} else {
None
};
// run & annotate
for (xs, _paths) in dl {
let ys = model.forward(&xs, args.profile)?;
let images_plotted = annotator.plot(&xs, &ys, !args.nosave)?;
// show image
match &mut viewer {
Some(viewer) => viewer.imshow(&images_plotted)?,
None => continue,
}
// check out window and key event
match &mut viewer {
Some(viewer) => {
if !viewer.is_open() || viewer.is_key_pressed(usls::Key::Escape) {
break;
}
}
None => continue,
}
// write video
if !args.nosave {
match &mut viewer {
Some(viewer) => viewer.write_batch(&images_plotted)?,
None => continue,
}
}
}
// finish video write
if !args.nosave {
if let Some(viewer) = &mut viewer {
viewer.finish_write()?;
}
}
Ok(())
}

@ -9,11 +9,11 @@ edition = "2021"
[dependencies]
clap = { version = "4.2.4", features = ["derive"] }
image = { version = "0.24.7", default-features = false, features = ["jpeg", "png", "webp-encoder"] }
imageproc = { version = "0.23.0", default-features = false }
ndarray = { version = "0.15.6" }
ort = { version = "1.16.3", default-features = false, features = ["load-dynamic", "copy-dylibs", "half"] }
rusttype = { version = "0.9", default-features = false }
image = { version = "0.25.2"}
imageproc = { version = "0.25.0"}
ndarray = { version = "0.16" }
ort = { version = "2.0.0-rc.5", features = ["cuda", "tensorrt", "load-dynamic", "copy-dylibs", "half"]}
rusttype = { version = "0.9.3" }
anyhow = { version = "1.0.75" }
regex = { version = "1.5.4" }
rand = { version = "0.8.5" }
@ -21,3 +21,4 @@ chrono = { version = "0.4.30" }
half = { version = "2.3.1" }
dirs = { version = "5.0.1" }
ureq = { version = "2.9.1" }
ab_glyph = "0.2.29"

@ -5,9 +5,9 @@ This repository provides a Rust demo for performing YOLOv8 tasks like `Classific
## Recently Updated
- Add YOLOv8-OBB demo
- Update ONNXRuntime to 1.17.x
- Update ONNXRuntime to 1.19.x
Newly updated YOLOv8 example code is located in this repository (https://github.com/jamjamjon/usls/tree/main/examples/yolo)
Newly updated YOLOv8 example code is located in [this repository](https://github.com/jamjamjon/usls/tree/main/examples/yolo)
## Features
@ -22,25 +22,16 @@ Newly updated YOLOv8 example code is located in this repository (https://github.
Please follow the Rust official installation. (https://www.rust-lang.org/tools/install)
### 2. Install ONNXRuntime
### 2. ONNXRuntime Linking
This repository use `ort` crate, which is ONNXRuntime wrapper for Rust. (https://docs.rs/ort/latest/ort/)
- #### For detailed setup instructions, refer to the [ORT documentation](https://ort.pyke.io/setup/linking).
You can follow the instruction with `ort` doc or simply do this:
- step1: Download ONNXRuntime(https://github.com/microsoft/onnxruntime/releases)
- setp2: Set environment variable `PATH` for linking.
On ubuntu, You can do like this:
```bash
vim ~/.bashrc
# Add the path of ONNXRUntime lib
export LD_LIBRARY_PATH=/home/qweasd/Documents/onnxruntime-linux-x64-gpu-1.16.3/lib${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
source ~/.bashrc
```
- #### For Linux or macOS Users:
- Download the ONNX Runtime package from the [Releases page](https://github.com/microsoft/onnxruntime/releases).
- Set up the library path by exporting the `ORT_DYLIB_PATH` environment variable:
```shell
export ORT_DYLIB_PATH=/path/to/onnxruntime/lib/libonnxruntime.so.1.19.0
```
### 3. \[Optional\] Install CUDA & CuDNN & TensorRT

@ -15,7 +15,7 @@ pub struct Args {
/// device id
#[arg(long, default_value_t = 0)]
pub device_id: u32,
pub device_id: i32,
/// using TensorRT EP
#[arg(long)]

@ -117,3 +117,44 @@ pub fn check_font(font: &str) -> rusttype::Font<'static> {
let buffer = std::fs::read(font_path).unwrap();
rusttype::Font::try_from_vec(buffer).unwrap()
}
use ab_glyph::FontArc;
pub fn load_font() -> FontArc {
use std::path::Path;
let font_path = Path::new("./font/Arial.ttf");
match font_path.try_exists() {
Ok(true) => {
let buffer = std::fs::read(font_path).unwrap();
FontArc::try_from_vec(buffer).unwrap()
}
Ok(false) => {
std::fs::create_dir_all("./font").unwrap();
println!("Downloading font...");
let source_url = "https://ultralytics.com/assets/Arial.ttf";
let resp = ureq::get(source_url)
.timeout(std::time::Duration::from_secs(500))
.call()
.unwrap_or_else(|err| panic!("> Failed to download font: {source_url}: {err:?}"));
// read to buffer
let mut buffer = vec![];
let total_size = resp
.header("Content-Length")
.and_then(|s| s.parse::<u64>().ok())
.unwrap();
let _reader = resp
.into_reader()
.take(total_size)
.read_to_end(&mut buffer)
.unwrap();
// save
let mut fd = std::fs::File::create(font_path).unwrap();
fd.write_all(&buffer).unwrap();
println!("Font saved at: {:?}", font_path.display());
FontArc::try_from_vec(buffer).unwrap()
}
Err(e) => {
panic!("Failed to load font {}", e);
}
}
}

@ -6,7 +6,7 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
let args = Args::parse();
// 1. load image
let x = image::io::Reader::open(&args.source)?
let x = image::ImageReader::open(&args.source)?
.with_guessed_format()?
.decode()?;

@ -1,5 +1,6 @@
#![allow(clippy::type_complexity)]
use ab_glyph::FontArc;
use anyhow::Result;
use image::{DynamicImage, GenericImageView, ImageBuffer};
use ndarray::{s, Array, Axis, IxDyn};
@ -7,7 +8,7 @@ use rand::{thread_rng, Rng};
use std::path::PathBuf;
use crate::{
check_font, gen_time_string, non_max_suppression, Args, Batch, Bbox, Embedding, OrtBackend,
gen_time_string, load_font, non_max_suppression, Args, Batch, Bbox, Embedding, OrtBackend,
OrtConfig, OrtEP, Point2, YOLOResult, YOLOTask, SKELETON,
};
@ -36,9 +37,9 @@ impl YOLOv8 {
let ep = if config.trt {
OrtEP::Trt(config.device_id)
} else if config.cuda {
OrtEP::Cuda(config.device_id)
OrtEP::CUDA(config.device_id)
} else {
OrtEP::Cpu
OrtEP::CPU
};
// batch
@ -330,12 +331,19 @@ impl YOLOv8 {
// coefs * proto -> mask
let coefs = Array::from_shape_vec((1, nm), coefs)?; // (n, nm)
let proto = proto.to_owned().into_shape((nm, nh * nw))?; // (nm, nh*nw)
let mask = coefs.dot(&proto).into_shape((nh, nw, 1))?; // (nh, nw, n)
let proto = proto.to_owned();
let proto = proto.to_shape((nm, nh * nw))?; // (nm, nh*nw)
let mask = coefs.dot(&proto); // (nh, nw, n)
let mask = mask.to_shape((nh, nw, 1))?;
// build image from ndarray
let mask_im: ImageBuffer<image::Luma<_>, Vec<f32>> =
match ImageBuffer::from_raw(nw as u32, nh as u32, mask.into_raw_vec()) {
match ImageBuffer::from_raw(
nw as u32,
nh as u32,
mask.to_owned().into_raw_vec_and_offset().0,
) {
Some(image) => image,
None => panic!("can not create image from ndarray"),
};
@ -410,7 +418,7 @@ impl YOLOv8 {
skeletons: Option<&[(usize, usize)]>,
) {
// check font then load
let font = check_font("Arial.ttf");
let font: FontArc = load_font();
for (_idb, (img0, y)) in xs0.iter().zip(ys.iter()).enumerate() {
let mut img = img0.to_rgb8();
@ -422,12 +430,13 @@ impl YOLOv8 {
let legend_size = img.width().max(img.height()) / scale;
let x = img.width() / 20;
let y = img.height() / 20 + i as u32 * legend_size;
imageproc::drawing::draw_text_mut(
&mut img,
image::Rgb([0, 255, 0]),
x as i32,
y as i32,
rusttype::Scale::uniform(legend_size as f32 - 1.),
legend_size as f32,
&font,
&legend,
);
@ -454,7 +463,7 @@ impl YOLOv8 {
image::Rgb(self.color_palette[bbox.id()].into()),
bbox.xmin() as i32,
(bbox.ymin() - legend_size as f32) as i32,
rusttype::Scale::uniform(legend_size as f32 - 1.),
legend_size as f32,
&font,
&legend,
);
@ -551,7 +560,7 @@ impl YOLOv8 {
None => String::from(""),
},
self.engine.ep(),
if let OrtEP::Cpu = self.engine.ep() {
if let OrtEP::CPU = self.engine.ep() {
""
} else {
"(May still fall back to CPU)"

@ -2,11 +2,13 @@ use anyhow::Result;
use clap::ValueEnum;
use half::f16;
use ndarray::{Array, CowArray, IxDyn};
use ort::execution_providers::{CUDAExecutionProviderOptions, TensorRTExecutionProviderOptions};
use ort::tensor::TensorElementDataType;
use ort::{Environment, ExecutionProvider, Session, SessionBuilder, Value};
use ort::{
CPUExecutionProvider, CUDAExecutionProvider, ExecutionProvider, ExecutionProviderDispatch,
TensorRTExecutionProvider,
};
use ort::{Session, SessionBuilder};
use ort::{TensorElementType, ValueType};
use regex::Regex;
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum)]
pub enum YOLOTask {
// YOLO tasks
@ -19,9 +21,9 @@ pub enum YOLOTask {
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum OrtEP {
// ONNXRuntime execution provider
Cpu,
Cuda(u32),
Trt(u32),
CPU,
CUDA(i32),
Trt(i32),
}
#[derive(Debug)]
@ -44,8 +46,9 @@ impl Default for Batch {
#[derive(Debug, Default)]
pub struct OrtInputs {
// ONNX model inputs attrs
pub shapes: Vec<Vec<i32>>,
pub dtypes: Vec<TensorElementDataType>,
pub shapes: Vec<Vec<i64>>,
//pub dtypes: Vec<TensorElementDataType>,
pub dtypes: Vec<TensorElementType>,
pub names: Vec<String>,
pub sizes: Vec<Vec<u32>>,
}
@ -56,12 +59,19 @@ impl OrtInputs {
let mut dtypes = Vec::new();
let mut names = Vec::new();
for i in session.inputs.iter() {
let shape: Vec<i32> = i
/* let shape: Vec<i32> = i
.dimensions()
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
.collect();
shapes.push(shape);
dtypes.push(i.input_type);
shapes.push(shape); */
if let ort::ValueType::Tensor { ty, dimensions } = &i.input_type {
dtypes.push(ty.clone());
let shape = dimensions.clone();
shapes.push(shape);
} else {
panic!("不支持的数据格式, {} - {}", file!(), line!());
}
//dtypes.push(i.input_type);
names.push(i.name.clone());
}
Self {
@ -97,12 +107,14 @@ pub struct OrtBackend {
impl OrtBackend {
pub fn build(args: OrtConfig) -> Result<Self> {
// build env & session
let env = Environment::builder()
.with_name("YOLOv8")
.with_log_level(ort::LoggingLevel::Verbose)
.build()?
.into_arc();
let session = SessionBuilder::new(&env)?.with_model_from_file(&args.f)?;
// in version 2.x environment is removed
/* let env = ort::EnvironmentBuilder
::with_name("YOLOv8")
.build()?
.into_arc(); */
let sessionbuilder = SessionBuilder::new()?;
let session = sessionbuilder.commit_from_file(&args.f)?;
//let session = SessionBuilder::new(&env)?.with_model_from_file(&args.f)?;
// get inputs
let mut inputs = OrtInputs::new(&session);
@ -142,16 +154,19 @@ impl OrtBackend {
// build provider
let (ep, provider) = match args.ep {
OrtEP::Cuda(device_id) => Self::set_ep_cuda(device_id),
OrtEP::CUDA(device_id) => Self::set_ep_cuda(device_id),
OrtEP::Trt(device_id) => Self::set_ep_trt(device_id, args.trt_fp16, &batch, &inputs),
_ => (OrtEP::Cpu, ExecutionProvider::CPU(Default::default())),
_ => (
OrtEP::CPU,
ExecutionProviderDispatch::from(CPUExecutionProvider::default()),
),
};
// build session again with the new provider
let session = SessionBuilder::new(&env)?
let session = SessionBuilder::new()?
// .with_optimization_level(ort::GraphOptimizationLevel::Level3)?
.with_execution_providers([provider])?
.with_model_from_file(args.f)?;
.commit_from_file(args.f)?;
// task: using given one or guessing
let task = match args.task {
@ -185,57 +200,58 @@ impl OrtBackend {
pub fn fetch_inputs_from_session(
session: &Session,
) -> (Vec<Vec<i32>>, Vec<TensorElementDataType>, Vec<String>) {
) -> (Vec<Vec<i64>>, Vec<TensorElementType>, Vec<String>) {
// get inputs attrs from ONNX model
let mut shapes = Vec::new();
let mut dtypes = Vec::new();
let mut names = Vec::new();
for i in session.inputs.iter() {
let shape: Vec<i32> = i
.dimensions()
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
.collect();
shapes.push(shape);
dtypes.push(i.input_type);
if let ort::ValueType::Tensor { ty, dimensions } = &i.input_type {
dtypes.push(ty.clone());
let shape = dimensions.clone();
shapes.push(shape);
} else {
panic!("不支持的数据格式, {} - {}", file!(), line!());
}
names.push(i.name.clone());
}
(shapes, dtypes, names)
}
pub fn set_ep_cuda(device_id: u32) -> (OrtEP, ExecutionProvider) {
// set CUDA
if ExecutionProvider::CUDA(Default::default()).is_available() {
pub fn set_ep_cuda(device_id: i32) -> (OrtEP, ExecutionProviderDispatch) {
let cuda_provider = CUDAExecutionProvider::default().with_device_id(device_id);
if let Ok(true) = cuda_provider.is_available() {
(
OrtEP::Cuda(device_id),
ExecutionProvider::CUDA(CUDAExecutionProviderOptions {
device_id,
..Default::default()
}),
OrtEP::CUDA(device_id),
ExecutionProviderDispatch::from(cuda_provider), //PlantForm::CUDA(cuda_provider)
)
} else {
println!("> CUDA is not available! Using CPU.");
(OrtEP::Cpu, ExecutionProvider::CPU(Default::default()))
(
OrtEP::CPU,
ExecutionProviderDispatch::from(CPUExecutionProvider::default()), //PlantForm::CPU(CPUExecutionProvider::default())
)
}
}
pub fn set_ep_trt(
device_id: u32,
device_id: i32,
fp16: bool,
batch: &Batch,
inputs: &OrtInputs,
) -> (OrtEP, ExecutionProvider) {
) -> (OrtEP, ExecutionProviderDispatch) {
// set TensorRT
if ExecutionProvider::TensorRT(Default::default()).is_available() {
let (height, width) = (inputs.sizes[0][0], inputs.sizes[0][1]);
let trt_provider = TensorRTExecutionProvider::default().with_device_id(device_id);
// dtype match checking
if inputs.dtypes[0] == TensorElementDataType::Float16 && !fp16 {
//trt_provider.
if let Ok(true) = trt_provider.is_available() {
let (height, width) = (inputs.sizes[0][0], inputs.sizes[0][1]);
if inputs.dtypes[0] == TensorElementType::Float16 && !fp16 {
panic!(
"Dtype mismatch! Expected: Float32, got: {:?}. You should use `--fp16`",
inputs.dtypes[0]
);
}
// dynamic shape: input_tensor_1:dim_1xdim_2x...,input_tensor_2:dim_3xdim_4x...,...
let mut opt_string = String::new();
let mut min_string = String::new();
@ -251,17 +267,16 @@ impl OrtBackend {
let _ = opt_string.pop();
let _ = min_string.pop();
let _ = max_string.pop();
let trt_provider = trt_provider
.with_profile_opt_shapes(opt_string)
.with_profile_min_shapes(min_string)
.with_profile_max_shapes(max_string)
.with_fp16(fp16)
.with_timing_cache(true);
(
OrtEP::Trt(device_id),
ExecutionProvider::TensorRT(TensorRTExecutionProviderOptions {
device_id,
fp16_enable: fp16,
timing_cache_enable: true,
profile_min_shapes: min_string,
profile_max_shapes: max_string,
profile_opt_shapes: opt_string,
..Default::default()
}),
ExecutionProviderDispatch::from(trt_provider),
)
} else {
println!("> TensorRT is not available! Try using CUDA...");
@ -283,8 +298,8 @@ impl OrtBackend {
pub fn run(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
// ORT inference
match self.dtype() {
TensorElementDataType::Float16 => self.run_fp16(xs, profile),
TensorElementDataType::Float32 => self.run_fp32(xs, profile),
TensorElementType::Float16 => self.run_fp16(xs, profile),
TensorElementType::Float32 => self.run_fp32(xs, profile),
_ => todo!(),
}
}
@ -300,14 +315,13 @@ impl OrtBackend {
// h2d
let t = std::time::Instant::now();
let xs = CowArray::from(xs);
let xs = vec![Value::from_array(self.session.allocator(), &xs)?];
if profile {
println!("[ORT H2D]: {:?}", t.elapsed());
}
// run
let t = std::time::Instant::now();
let ys = self.session.run(xs)?;
let ys = self.session.run(ort::inputs![xs.view()]?)?;
if profile {
println!("[ORT Inference]: {:?}", t.elapsed());
}
@ -315,21 +329,22 @@ impl OrtBackend {
// d2h
Ok(ys
.iter()
.map(|x| {
.map(|(_k, v)| {
// d2h
let t = std::time::Instant::now();
let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
let v = v.try_extract_tensor().unwrap();
//let v = v.try_extract::<_>().unwrap().view().clone().into_owned();
if profile {
println!("[ORT D2H]: {:?}", t.elapsed());
}
// f16->f32
let t_ = std::time::Instant::now();
let x = x.mapv(f16::to_f32);
let v = v.mapv(f16::to_f32);
if profile {
println!("[ORT f16->f32]: {:?}", t_.elapsed());
}
x
v
})
.collect::<Vec<Array<_, _>>>())
}
@ -338,14 +353,13 @@ impl OrtBackend {
// h2d
let t = std::time::Instant::now();
let xs = CowArray::from(xs);
let xs = vec![Value::from_array(self.session.allocator(), &xs)?];
if profile {
println!("[ORT H2D]: {:?}", t.elapsed());
}
// run
let t = std::time::Instant::now();
let ys = self.session.run(xs)?;
let ys = self.session.run(ort::inputs![xs.view()]?)?;
if profile {
println!("[ORT Inference]: {:?}", t.elapsed());
}
@ -353,39 +367,44 @@ impl OrtBackend {
// d2h
Ok(ys
.iter()
.map(|x| {
.map(|(_k, v)| {
let t = std::time::Instant::now();
let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
let v = v.try_extract_tensor::<f32>().unwrap().into_owned();
//let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
if profile {
println!("[ORT D2H]: {:?}", t.elapsed());
}
x
v
})
.collect::<Vec<Array<_, _>>>())
}
pub fn output_shapes(&self) -> Vec<Vec<i32>> {
pub fn output_shapes(&self) -> Vec<Vec<i64>> {
let mut shapes = Vec::new();
for o in &self.session.outputs {
let shape: Vec<_> = o
.dimensions()
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
.collect();
shapes.push(shape);
for output in &self.session.outputs {
if let ValueType::Tensor { ty: _, dimensions } = &output.output_type {
let shape = dimensions.clone();
shapes.push(shape);
} else {
panic!("not support data format, {} - {}", file!(), line!());
}
}
shapes
}
pub fn output_dtypes(&self) -> Vec<TensorElementDataType> {
pub fn output_dtypes(&self) -> Vec<TensorElementType> {
let mut dtypes = Vec::new();
self.session
.outputs
.iter()
.for_each(|x| dtypes.push(x.output_type));
for output in &self.session.outputs {
if let ValueType::Tensor { ty, dimensions: _ } = &output.output_type {
dtypes.push(ty.clone());
} else {
panic!("not support data format, {} - {}", file!(), line!());
}
}
dtypes
}
pub fn input_shapes(&self) -> &Vec<Vec<i32>> {
pub fn input_shapes(&self) -> &Vec<Vec<i64>> {
&self.inputs.shapes
}
@ -393,11 +412,11 @@ impl OrtBackend {
&self.inputs.names
}
pub fn input_dtypes(&self) -> &Vec<TensorElementDataType> {
pub fn input_dtypes(&self) -> &Vec<TensorElementType> {
&self.inputs.dtypes
}
pub fn dtype(&self) -> TensorElementDataType {
pub fn dtype(&self) -> TensorElementType {
self.input_dtypes()[0]
}

@ -1,65 +0,0 @@
# YOLOv8 - Int8-TFLite Runtime
Welcome to the YOLOv8 Int8 TFLite Runtime for efficient and optimized object detection project. This README provides comprehensive instructions for installing and using our YOLOv8 implementation.
## Installation
Ensure a smooth setup by following these steps to install necessary dependencies.
### Installing Required Dependencies
Install all required dependencies with this simple command:
```bash
pip install -r requirements.txt
```
### Installing `tflite-runtime`
To load TFLite models, install the `tflite-runtime` package using:
```bash
pip install tflite-runtime
```
### Installing `tensorflow-gpu` (For NVIDIA GPU Users)
Leverage GPU acceleration with NVIDIA GPUs by installing `tensorflow-gpu`:
```bash
pip install tensorflow-gpu
```
**Note:** Ensure you have compatible GPU drivers installed on your system.
### Installing `tensorflow` (CPU Version)
For CPU usage or non-NVIDIA GPUs, install TensorFlow with:
```bash
pip install tensorflow
```
## Usage
Follow these instructions to run YOLOv8 after successful installation.
Convert the YOLOv8 model to Int8 TFLite format:
```bash
yolo export model=yolov8n.pt imgsz=640 format=tflite int8
```
Locate the Int8 TFLite model in `yolov8n_saved_model`. Choose `best_full_integer_quant` or verify quantization at [Netron](https://netron.app/). Then, execute the following in your terminal:
```bash
python main.py --model yolov8n_full_integer_quant.tflite --img image.jpg --conf-thres 0.5 --iou-thres 0.5
```
Replace `best_full_integer_quant.tflite` with your model file's path, `image.jpg` with your input image, and adjust the confidence (conf-thres) and IoU thresholds (iou-thres) as necessary.
### Output
The output is displayed as annotated images, showcasing the model's detection capabilities:
![image](https://github.com/wamiqraza/Attribute-recognition-and-reidentification-Market1501-dataset/blob/main/img/bus.jpg)

@ -1,308 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import argparse
import cv2
import numpy as np
from tflite_runtime import interpreter as tflite
from ultralytics.utils import ASSETS, yaml_load
from ultralytics.utils.checks import check_yaml
# Declare as global variables, can be updated based trained model image size
img_width = 640
img_height = 640
class LetterBox:
"""Resizes and reshapes images while maintaining aspect ratio by adding padding, suitable for YOLO models."""
def __init__(
self, new_shape=(img_width, img_height), auto=False, scaleFill=False, scaleup=True, center=True, stride=32
):
"""Initializes LetterBox with parameters for reshaping and transforming image while maintaining aspect ratio."""
self.new_shape = new_shape
self.auto = auto
self.scaleFill = scaleFill
self.scaleup = scaleup
self.stride = stride
self.center = center # Put the image in the middle or top-left
def __call__(self, labels=None, image=None):
"""Return updated labels and image with added border."""
if labels is None:
labels = {}
img = labels.get("img") if image is None else image
shape = img.shape[:2] # current shape [height, width]
new_shape = labels.pop("rect_shape", self.new_shape)
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not self.scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if self.auto: # minimum rectangle
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding
elif self.scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
if self.center:
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
img = cv2.copyMakeBorder(
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
) # add border
if labels.get("ratio_pad"):
labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation
if len(labels):
labels = self._update_labels(labels, ratio, dw, dh)
labels["img"] = img
labels["resized_shape"] = new_shape
return labels
else:
return img
def _update_labels(self, labels, ratio, padw, padh):
"""Update labels."""
labels["instances"].convert_bbox(format="xyxy")
labels["instances"].denormalize(*labels["img"].shape[:2][::-1])
labels["instances"].scale(*ratio)
labels["instances"].add_padding(padw, padh)
return labels
class Yolov8TFLite:
"""Class for performing object detection using YOLOv8 model converted to TensorFlow Lite format."""
def __init__(self, tflite_model, input_image, confidence_thres, iou_thres):
"""
Initializes an instance of the Yolov8TFLite class.
Args:
tflite_model: Path to the TFLite model.
input_image: Path to the input image.
confidence_thres: Confidence threshold for filtering detections.
iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
"""
self.tflite_model = tflite_model
self.input_image = input_image
self.confidence_thres = confidence_thres
self.iou_thres = iou_thres
# Load the class names from the COCO dataset
self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
# Generate a color palette for the classes
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
def draw_detections(self, img, box, score, class_id):
"""
Draws bounding boxes and labels on the input image based on the detected objects.
Args:
img: The input image to draw detections on.
box: Detected bounding box.
score: Corresponding detection score.
class_id: Class ID for the detected object.
Returns:
None
"""
# Extract the coordinates of the bounding box
x1, y1, w, h = box
# Retrieve the color for the class ID
color = self.color_palette[class_id]
# Draw the bounding box on the image
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
# Create the label text with class name and score
label = f"{self.classes[class_id]}: {score:.2f}"
# Calculate the dimensions of the label text
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
# Calculate the position of the label text
label_x = x1
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
# Draw a filled rectangle as the background for the label text
cv2.rectangle(
img,
(int(label_x), int(label_y - label_height)),
(int(label_x + label_width), int(label_y + label_height)),
color,
cv2.FILLED,
)
# Draw the label text on the image
cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
def preprocess(self):
"""
Preprocesses the input image before performing inference.
Returns:
image_data: Preprocessed image data ready for inference.
"""
# Read the input image using OpenCV
self.img = cv2.imread(self.input_image)
print("image before", self.img)
# Get the height and width of the input image
self.img_height, self.img_width = self.img.shape[:2]
letterbox = LetterBox(new_shape=[img_width, img_height], auto=False, stride=32)
image = letterbox(image=self.img)
image = [image]
image = np.stack(image)
image = image[..., ::-1].transpose((0, 3, 1, 2))
img = np.ascontiguousarray(image)
# n, h, w, c
image = img.astype(np.float32)
return image / 255
def postprocess(self, input_image, output):
"""
Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
Args:
input_image (numpy.ndarray): The input image.
output (numpy.ndarray): The output of the model.
Returns:
numpy.ndarray: The input image with detections drawn on it.
"""
# Transpose predictions outside the loop
output = [np.transpose(pred) for pred in output]
boxes = []
scores = []
class_ids = []
# Vectorize extraction of bounding boxes, scores, and class IDs
for pred in output:
x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3]
x1 = x - w / 2
y1 = y - h / 2
boxes.extend(np.column_stack([x1, y1, w, h]))
# Argmax and score extraction for all predictions at once
idx = np.argmax(pred[:, 4:], axis=1)
scores.extend(pred[np.arange(pred.shape[0]), idx + 4])
class_ids.extend(idx)
# Precompute gain and pad once
img_height, img_width = input_image.shape[:2]
gain = min(img_width / self.img_width, img_height / self.img_height)
pad = (
round((img_width - self.img_width * gain) / 2 - 0.1),
round((img_height - self.img_height * gain) / 2 - 0.1),
)
# Non-Maximum Suppression (NMS) in one go
indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
# Process selected indices
for i in indices.flatten():
box = boxes[i]
box[0] = (box[0] - pad[0]) / gain
box[1] = (box[1] - pad[1]) / gain
box[2] = box[2] / gain
box[3] = box[3] / gain
score = scores[i]
class_id = class_ids[i]
if score > 0.25:
# Draw the detection on the input image
self.draw_detections(input_image, box, score, class_id)
return input_image
def main(self):
"""
Performs inference using a TFLite model and returns the output image with drawn detections.
Returns:
output_img: The output image with drawn detections.
"""
# Create an interpreter for the TFLite model
interpreter = tflite.Interpreter(model_path=self.tflite_model)
self.model = interpreter
interpreter.allocate_tensors()
# Get the model inputs
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Store the shape of the input for later use
input_shape = input_details[0]["shape"]
self.input_width = input_shape[1]
self.input_height = input_shape[2]
# Preprocess the image data
img_data = self.preprocess()
img_data = img_data
# img_data = img_data.cpu().numpy()
# Set the input tensor to the interpreter
print(input_details[0]["index"])
print(img_data.shape)
img_data = img_data.transpose((0, 2, 3, 1))
scale, zero_point = input_details[0]["quantization"]
img_data_int8 = (img_data / scale + zero_point).astype(np.int8)
interpreter.set_tensor(input_details[0]["index"], img_data_int8)
# Run inference
interpreter.invoke()
# Get the output tensor from the interpreter
output = interpreter.get_tensor(output_details[0]["index"])
scale, zero_point = output_details[0]["quantization"]
output = (output.astype(np.float32) - zero_point) * scale
output[:, [0, 2]] *= img_width
output[:, [1, 3]] *= img_height
print(output)
# Perform post-processing on the outputs to obtain output image.
return self.postprocess(self.img, output)
if __name__ == "__main__":
# Create an argument parser to handle command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", type=str, default="yolov8n_full_integer_quant.tflite", help="Input your TFLite model."
)
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.")
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold")
parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold")
args = parser.parse_args()
# Create an instance of the Yolov8TFLite class with the specified arguments
detection = Yolov8TFLite(args.model, args.img, args.conf_thres, args.iou_thres)
# Perform object detection and obtain the output image
output_image = detection.main()
# Display the output image in a window
cv2.imshow("Output", output_image)
# Wait for a key press to exit
cv2.waitKey(0)

@ -0,0 +1,55 @@
# YOLOv8 - TFLite Runtime
This example shows how to run inference with YOLOv8 TFLite model. It supports FP32, FP16 and INT8 models.
## Installation
### Installing `tflite-runtime`
To load TFLite models, install the `tflite-runtime` package using:
```bash
pip install tflite-runtime
```
### Installing `tensorflow-gpu` (For NVIDIA GPU Users)
Leverage GPU acceleration with NVIDIA GPUs by installing `tensorflow-gpu`:
```bash
pip install tensorflow-gpu
```
**Note:** Ensure you have compatible GPU drivers installed on your system.
### Installing `tensorflow` (CPU Version)
For CPU usage or non-NVIDIA GPUs, install TensorFlow with:
```bash
pip install tensorflow
```
## Usage
Follow these instructions to run YOLOv8 after successful installation.
Convert the YOLOv8 model to TFLite format:
```bash
yolo export model=yolov8n.pt imgsz=640 format=tflite int8
```
Locate the TFLite model in `yolov8n_saved_model`. Then, execute the following in your terminal:
```bash
python main.py --model yolov8n_full_integer_quant.tflite --img image.jpg --conf 0.25 --iou 0.45 --metadata "metadata.yaml"
```
Replace `best_full_integer_quant.tflite` with the TFLite model path, `image.jpg` with the input image path, `metadata.yaml` with the one generated by `ultralytics` during export, and adjust the confidence (conf) and IoU thresholds (iou) as necessary.
### Output
The output would show the detections along with the class labels and confidences of each detected object.
![image](https://github.com/wamiqraza/Attribute-recognition-and-reidentification-Market1501-dataset/blob/main/img/bus.jpg)

@ -0,0 +1,221 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import argparse
from typing import Tuple, Union
import cv2
import numpy as np
import tensorflow as tf
import yaml
from ultralytics.utils import ASSETS
try:
from tflite_runtime.interpreter import Interpreter
except ImportError:
import tensorflow as tf
Interpreter = tf.lite.Interpreter
class YOLOv8TFLite:
"""
YOLOv8TFLite.
A class for performing object detection using the YOLOv8 model with TensorFlow Lite.
Attributes:
model (str): Path to the TensorFlow Lite model file.
conf (float): Confidence threshold for filtering detections.
iou (float): Intersection over Union threshold for non-maximum suppression.
metadata (Optional[str]): Path to the metadata file, if any.
Methods:
detect(img_path: str) -> np.ndarray:
Performs inference and returns the output image with drawn detections.
"""
def __init__(self, model: str, conf: float = 0.25, iou: float = 0.45, metadata: Union[str, None] = None):
"""
Initializes an instance of the YOLOv8TFLite class.
Args:
model (str): Path to the TFLite model.
conf (float, optional): Confidence threshold for filtering detections. Defaults to 0.25.
iou (float, optional): IoU (Intersection over Union) threshold for non-maximum suppression. Defaults to 0.45.
metadata (Union[str, None], optional): Path to the metadata file or None if not used. Defaults to None.
"""
self.conf = conf
self.iou = iou
if metadata is None:
self.classes = {i: i for i in range(1000)}
else:
with open(metadata) as f:
self.classes = yaml.safe_load(f)["names"]
np.random.seed(42)
self.color_palette = np.random.uniform(128, 255, size=(len(self.classes), 3))
self.model = Interpreter(model_path=model)
self.model.allocate_tensors()
input_details = self.model.get_input_details()[0]
self.in_width, self.in_height = input_details["shape"][1:3]
self.in_index = input_details["index"]
self.in_scale, self.in_zero_point = input_details["quantization"]
self.int8 = input_details["dtype"] == np.int8
output_details = self.model.get_output_details()[0]
self.out_index = output_details["index"]
self.out_scale, self.out_zero_point = output_details["quantization"]
def letterbox(self, img: np.ndarray, new_shape: Tuple = (640, 640)) -> Tuple[np.ndarray, Tuple[float, float]]:
"""Resizes and reshapes images while maintaining aspect ratio by adding padding, suitable for YOLO models."""
shape = img.shape[:2] # current shape [height, width]
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
return img, (top / img.shape[0], left / img.shape[1])
def draw_detections(self, img: np.ndarray, box: np.ndarray, score: np.float32, class_id: int) -> None:
"""
Draws bounding boxes and labels on the input image based on the detected objects.
Args:
img (np.ndarray): The input image to draw detections on.
box (np.ndarray): Detected bounding box in the format [x1, y1, width, height].
score (np.float32): Corresponding detection score.
class_id (int): Class ID for the detected object.
Returns:
None
"""
x1, y1, w, h = box
color = self.color_palette[class_id]
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
label = f"{self.classes[class_id]}: {score:.2f}"
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
label_x = x1
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
cv2.rectangle(
img,
(int(label_x), int(label_y - label_height)),
(int(label_x + label_width), int(label_y + label_height)),
color,
cv2.FILLED,
)
cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
def preprocess(self, img: np.ndarray) -> Tuple[np.ndarray, Tuple[float, float]]:
"""
Preprocesses the input image before performing inference.
Args:
img (np.ndarray): The input image to be preprocessed.
Returns:
Tuple[np.ndarray, Tuple[float, float]]: A tuple containing:
- The preprocessed image (np.ndarray).
- A tuple of two float values representing the padding applied (top/bottom, left/right).
"""
img, pad = self.letterbox(img, (self.in_width, self.in_height))
img = img[..., ::-1][None] # N,H,W,C for TFLite
img = np.ascontiguousarray(img)
img = img.astype(np.float32)
return img / 255, pad
def postprocess(self, img: np.ndarray, outputs: np.ndarray, pad: Tuple[float, float]) -> np.ndarray:
"""
Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
Args:
img (numpy.ndarray): The input image.
outputs (numpy.ndarray): The output of the model.
pad (Tuple[float, float]): Padding used by letterbox.
Returns:
numpy.ndarray: The input image with detections drawn on it.
"""
outputs[:, 0] -= pad[1]
outputs[:, 1] -= pad[0]
outputs[:, :4] *= max(img.shape)
outputs = outputs.transpose(0, 2, 1)
outputs[..., 0] -= outputs[..., 2] / 2
outputs[..., 1] -= outputs[..., 3] / 2
for out in outputs:
scores = out[:, 4:].max(-1)
keep = scores > self.conf
boxes = out[keep, :4]
scores = scores[keep]
class_ids = out[keep, 4:].argmax(-1)
indices = cv2.dnn.NMSBoxes(boxes, scores, self.conf, self.iou).flatten()
[self.draw_detections(img, boxes[i], scores[i], class_ids[i]) for i in indices]
return img
def detect(self, img_path: str) -> np.ndarray:
"""
Performs inference using a TFLite model and returns the output image with drawn detections.
Args:
img_path (str): The path to the input image file.
Returns:
np.ndarray: The output image with drawn detections.
"""
img = cv2.imread(img_path)
x, pad = self.preprocess(img)
if self.int8:
x = (x / self.in_scale + self.in_zero_point).astype(np.int8)
self.model.set_tensor(self.in_index, x)
self.model.invoke()
y = self.model.get_tensor(self.out_index)
if self.int8:
y = (y.astype(np.float32) - self.out_zero_point) * self.out_scale
return self.postprocess(img, y, pad)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
default="yolov8n_saved_model/yolov8n_full_integer_quant.tflite",
help="Path to TFLite model.",
)
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold")
parser.add_argument("--metadata", type=str, default="yolov8n_saved_model/metadata.yaml", help="Metadata yaml")
args = parser.parse_args()
detector = YOLOv8TFLite(args.model, args.conf, args.iou, args.metadata)
result = detector.detect(str(ASSETS / "bus.jpg"))[..., ::-1]
cv2.imshow("Output", result)
cv2.waitKey(0)

@ -112,7 +112,7 @@
"heatmap_obj = solutions.Heatmap(\n",
" colormap=cv2.COLORMAP_PARULA, # Color of the heatmap\n",
" show=True, # Display the image during processing\n",
" model=yolo11n.pt, # Ultralytics YOLO11 model file\n",
" model=\"yolo11n.pt\", # Ultralytics YOLO11 model file\n",
")\n",
"\n",
"while cap.isOpened():\n",

@ -123,7 +123,7 @@
"counter = solutions.ObjectCounter(\n",
" show=True, # Display the image during processing\n",
" region=line_points, # Region of interest points\n",
" model=yolo11n.pt, # Ultralytics YOLO11 model file\n",
" model=\"yolo11n.pt\", # Ultralytics YOLO11 model file\n",
" line_width=2, # Thickness of the lines and bounding boxes\n",
")\n",
"\n",

@ -176,7 +176,7 @@
"\n",
" # Annotate each mask with its corresponding tracking ID and color\n",
" for mask, track_id in zip(masks, track_ids):\n",
" annotator.seg_bbox(mask=mask, mask_color=colors(track_id, True), track_label=str(track_id))\n",
" annotator.seg_bbox(mask=mask, mask_color=colors(int(track_id), True), label=str(track_id))\n",
"\n",
" # Write the annotated frame to the output video\n",
" out.write(im0)\n",

@ -398,11 +398,12 @@ nav:
- JupyterLab: integrations/jupyterlab.md
- Kaggle: integrations/kaggle.md
- MLflow: integrations/mlflow.md
- NCNN: integrations/ncnn.md
- Neural Magic: integrations/neural-magic.md
- ONNX: integrations/onnx.md
- OpenVINO: integrations/openvino.md
- PaddlePaddle: integrations/paddlepaddle.md
- MNN: integrations/mnn.md
- NCNN: integrations/ncnn.md
- Paperspace Gradient: integrations/paperspace.md
- Ray Tune: integrations/ray-tune.md
- Roboflow: integrations/roboflow.md
@ -416,6 +417,7 @@ nav:
- TorchScript: integrations/torchscript.md
- VS Code: integrations/vscode.md
- Weights & Biases: integrations/weights-biases.md
- Albumentations: integrations/albumentations.md
- HUB:
- hub/index.md
- Web:

@ -192,6 +192,14 @@ def test_export_paddle():
YOLO(MODEL).export(format="paddle", imgsz=32)
@pytest.mark.slow
@pytest.mark.skipif(IS_RASPBERRYPI, reason="MNN not supported on Raspberry Pi")
def test_export_mnn():
"""Test YOLO exports to MNN format (WARNING: MNN test must precede NCNN test or CI error on Windows)."""
file = YOLO(MODEL).export(format="mnn", imgsz=32)
YOLO(file)(SOURCE, imgsz=32) # exported model inference
@pytest.mark.slow
def test_export_ncnn():
"""Test YOLO exports to NCNN format."""

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.3.23"
__version__ = "8.3.28"
import os

@ -7,11 +7,15 @@ from pathlib import Path
from types import SimpleNamespace
from typing import Dict, List, Union
import cv2
from ultralytics.utils import (
ASSETS,
ASSETS_URL,
DEFAULT_CFG,
DEFAULT_CFG_DICT,
DEFAULT_CFG_PATH,
DEFAULT_SOL_DICT,
IS_VSCODE,
LOGGER,
RANK,
@ -30,6 +34,17 @@ from ultralytics.utils import (
yaml_print,
)
# Define valid solutions
SOLUTION_MAP = {
"count": ("ObjectCounter", "count"),
"heatmap": ("Heatmap", "generate_heatmap"),
"queue": ("QueueManager", "process_queue"),
"speed": ("SpeedEstimator", "estimate_speed"),
"workout": ("AIGym", "monitor"),
"analytics": ("Analytics", "process_data"),
"help": None,
}
# Define valid tasks and modes
MODES = {"train", "val", "predict", "export", "track", "benchmark"}
TASKS = {"detect", "segment", "classify", "pose", "obb"}
@ -57,6 +72,31 @@ TASK2METRIC = {
MODELS = {TASK2MODEL[task] for task in TASKS}
ARGV = sys.argv or ["", ""] # sometimes sys.argv = []
SOLUTIONS_HELP_MSG = f"""
Arguments received: {str(['yolo'] + ARGV[1:])}. Ultralytics 'yolo solutions' usage overview:
yolo SOLUTIONS SOLUTION ARGS
Where SOLUTIONS (required) is a keyword
SOLUTION (optional) is one of {list(SOLUTION_MAP.keys())}
ARGS (optional) are any number of custom 'arg=value' pairs like 'show_in=True' that override defaults.
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
1. Call object counting solution
yolo solutions count source="path/to/video/file.mp4" region=[(20, 400), (1080, 404), (1080, 360), (20, 360)]
2. Call heatmaps solution
yolo solutions heatmap colormap=cv2.COLORMAP_PARAULA model=yolo11n.pt
3. Call queue management solution
yolo solutions queue region=[(20, 400), (1080, 404), (1080, 360), (20, 360)] model=yolo11n.pt
4. Call workouts monitoring solution for push-ups
yolo solutions workout model=yolo11n-pose.pt kpts=[6, 8, 10]
5. Generate analytical graphs
yolo solutions analytics analytics_type="pie"
"""
CLI_HELP_MSG = f"""
Arguments received: {str(['yolo'] + ARGV[1:])}. Ultralytics 'yolo' commands use the following syntax:
@ -78,19 +118,24 @@ CLI_HELP_MSG = f"""
4. Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required)
yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128
5. Streamlit real-time webcam inference GUI
yolo streamlit-predict
6. Run special commands:
6. Ultralytics solutions usage
yolo solutions count or in {list(SOLUTION_MAP.keys())} source="path/to/video/file.mp4"
7. Run special commands:
yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg
yolo solutions help
Docs: https://docs.ultralytics.com
Solutions: https://docs.ultralytics.com/solutions/
Community: https://community.ultralytics.com
GitHub: https://github.com/ultralytics/ultralytics
"""
@ -568,6 +613,100 @@ def handle_yolo_settings(args: List[str]) -> None:
LOGGER.warning(f"WARNING ⚠ settings error: '{e}'. Please see {url} for help.")
def handle_yolo_solutions(args: List[str]) -> None:
"""
Processes YOLO solutions arguments and runs the specified computer vision solutions pipeline.
Args:
args (List[str]): Command-line arguments for configuring and running the Ultralytics YOLO
solutions: https://docs.ultralytics.com/solutions/, It can include solution name, source,
and other configuration parameters.
Returns:
None: The function processes video frames and saves the output but doesn't return any value.
Examples:
Run people counting solution with default settings:
>>> handle_yolo_solutions(["count"])
Run analytics with custom configuration:
>>> handle_yolo_solutions(["analytics", "conf=0.25", "source=path/to/video/file.mp4"])
Notes:
- Default configurations are merged from DEFAULT_SOL_DICT and DEFAULT_CFG_DICT
- Arguments can be provided in the format 'key=value' or as boolean flags
- Available solutions are defined in SOLUTION_MAP with their respective classes and methods
- If an invalid solution is provided, defaults to 'count' solution
- Output videos are saved in 'runs/solution/{solution_name}' directory
- For 'analytics' solution, frame numbers are tracked for generating analytical graphs
- Video processing can be interrupted by pressing 'q'
- Processes video frames sequentially and saves output in .avi format
- If no source is specified, downloads and uses a default sample video
"""
full_args_dict = {**DEFAULT_SOL_DICT, **DEFAULT_CFG_DICT} # arguments dictionary
overrides = {}
# check dictionary alignment
for arg in merge_equals_args(args):
arg = arg.lstrip("-").rstrip(",")
if "=" in arg:
try:
k, v = parse_key_value_pair(arg)
overrides[k] = v
except (NameError, SyntaxError, ValueError, AssertionError) as e:
check_dict_alignment(full_args_dict, {arg: ""}, e)
elif arg in full_args_dict and isinstance(full_args_dict.get(arg), bool):
overrides[arg] = True
check_dict_alignment(full_args_dict, overrides) # dict alignment
# Get solution name
if args and args[0] in SOLUTION_MAP:
if args[0] != "help":
s_n = args.pop(0) # Extract the solution name directly
else:
LOGGER.info(SOLUTIONS_HELP_MSG)
else:
LOGGER.warning(
f" No valid solution provided. Using default 'count'. Available: {', '.join(SOLUTION_MAP.keys())}"
)
s_n = "count" # Default solution if none provided
cls, method = SOLUTION_MAP[s_n] # solution class name, method name and default source
from ultralytics import solutions # import ultralytics solutions
solution = getattr(solutions, cls)(IS_CLI=True, **overrides) # get solution class i.e ObjectCounter
process = getattr(solution, method) # get specific function of class for processing i.e, count from ObjectCounter
cap = cv2.VideoCapture(solution.CFG["source"]) # read the video file
# extract width, height and fps of the video file, create save directory and initialize video writer
import os # for directory creation
from pathlib import Path
from ultralytics.utils.files import increment_path # for output directory path update
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
if s_n == "analytics": # analytical graphs follow fixed shape for output i.e w=1920, h=1080
w, h = 1920, 1080
save_dir = increment_path(Path("runs") / "solutions" / "exp", exist_ok=False)
save_dir.mkdir(parents=True, exist_ok=True) # create the output directory
vw = cv2.VideoWriter(os.path.join(save_dir, "solution.avi"), cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
try: # Process video frames
f_n = 0 # frame number, required for analytical graphs
while cap.isOpened():
success, frame = cap.read()
if not success:
break
frame = process(frame, f_n := f_n + 1) if s_n == "analytics" else process(frame)
vw.write(frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
finally:
cap.release()
def handle_streamlit_inference():
"""
Open the Ultralytics Live Inference Streamlit app for real-time object detection.
@ -709,6 +848,7 @@ def entrypoint(debug=""):
"logout": lambda: handle_yolo_hub(args),
"copy-cfg": copy_default_cfg,
"streamlit-predict": lambda: handle_streamlit_inference(),
"solutions": lambda: handle_yolo_solutions(args[1:]),
}
full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in TASKS}, **{k: None for k in MODES}, **special}

@ -36,7 +36,7 @@ profile: False # (bool) profile ONNX and TensorRT speeds during training for log
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
multi_scale: False # (bool) Whether to use multiscale during training
# Segmentation
overlap_mask: True # (bool) masks should overlap during training (segment train only)
overlap_mask: True # (bool) merge object masks into a single image mask during training (segment train only)
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
# Classification
dropout: 0.0 # (float) use dropout regularization (classify train only)

@ -2,9 +2,9 @@
# Default YOLO tracker settings for BoT-SORT tracker https://github.com/NirAharon/BoT-SORT
tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.5 # threshold for the first association
track_high_thresh: 0.25 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association
new_track_thresh: 0.6 # threshold for init new track if the detection does not match any tracks
new_track_thresh: 0.25 # threshold for init new track if the detection does not match any tracks
track_buffer: 30 # buffer to calculate the time when to remove tracks
match_thresh: 0.8 # threshold for matching tracks
fuse_score: True # Whether to fuse confidence scores with the iou distances before matching

@ -2,9 +2,9 @@
# Default YOLO tracker settings for ByteTrack tracker https://github.com/ifzhang/ByteTrack
tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.5 # threshold for the first association
track_high_thresh: 0.25 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association
new_track_thresh: 0.6 # threshold for init new track if the detection does not match any tracks
new_track_thresh: 0.25 # threshold for init new track if the detection does not match any tracks
track_buffer: 30 # buffer to calculate the time when to remove tracks
match_thresh: 0.8 # threshold for matching tracks
fuse_score: True # Whether to fuse confidence scores with the iou distances before matching

@ -5,7 +5,18 @@ from pathlib import Path
from ultralytics import SAM, YOLO
def auto_annotate(data, det_model="yolov8x.pt", sam_model="sam_b.pt", device="", output_dir=None):
def auto_annotate(
data,
det_model="yolo11x.pt",
sam_model="sam_b.pt",
device="",
conf=0.25,
iou=0.45,
imgsz=640,
max_det=300,
classes=None,
output_dir=None,
):
"""
Automatically annotates images using a YOLO object detection model and a SAM segmentation model.
@ -17,6 +28,11 @@ def auto_annotate(data, det_model="yolov8x.pt", sam_model="sam_b.pt", device="",
det_model (str): Path or name of the pre-trained YOLO detection model.
sam_model (str): Path or name of the pre-trained SAM segmentation model.
device (str): Device to run the models on (e.g., 'cpu', 'cuda', '0').
conf (float): Confidence threshold for detection model; default is 0.25.
iou (float): IoU threshold for filtering overlapping boxes in detection results; default is 0.45.
imgsz (int): Input image resize dimension; default is 640.
max_det (int): Limits detections per image to control outputs in dense scenes.
classes (list): Filters predictions to specified class IDs, returning only relevant detections.
output_dir (str | None): Directory to save the annotated results. If None, a default directory is created.
Examples:
@ -36,7 +52,9 @@ def auto_annotate(data, det_model="yolov8x.pt", sam_model="sam_b.pt", device="",
output_dir = data.parent / f"{data.stem}_auto_annotate_labels"
Path(output_dir).mkdir(exist_ok=True, parents=True)
det_results = det_model(data, stream=True, device=device)
det_results = det_model(
data, stream=True, device=device, conf=conf, iou=iou, imgsz=imgsz, max_det=max_det, classes=classes
)
for result in det_results:
class_ids = result.boxes.cls.int().tolist() # noqa

@ -16,6 +16,7 @@ TensorFlow Lite | `tflite` | yolo11n.tflite
TensorFlow Edge TPU | `edgetpu` | yolo11n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolo11n_web_model/
PaddlePaddle | `paddle` | yolo11n_paddle_model/
MNN | `mnn` | yolo11n.mnn
NCNN | `ncnn` | yolo11n_ncnn_model/
Requirements:
@ -41,6 +42,7 @@ Inference:
yolo11n.tflite # TensorFlow Lite
yolo11n_edgetpu.tflite # TensorFlow Edge TPU
yolo11n_paddle_model # PaddlePaddle
yolo11n.mnn # MNN
yolo11n_ncnn_model # NCNN
TensorFlow.js:
@ -75,6 +77,7 @@ from ultralytics.utils import (
ARM64,
DEFAULT_CFG,
IS_JETSON,
IS_RASPBERRYPI,
LINUX,
LOGGER,
MACOS,
@ -109,6 +112,7 @@ def export_formats():
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False],
["TensorFlow.js", "tfjs", "_web_model", True, False],
["PaddlePaddle", "paddle", "_paddle_model", True, True],
["MNN", "mnn", ".mnn", True, True],
["NCNN", "ncnn", "_ncnn_model", True, True],
]
return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU"], zip(*x)))
@ -190,7 +194,9 @@ class Exporter:
flags = [x == fmt for x in fmts]
if sum(flags) != 1:
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn = flags # export booleans
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, mnn, ncnn = (
flags # export booleans
)
is_tf_format = any((saved_model, pb, tflite, edgetpu, tfjs))
# Device
@ -220,6 +226,8 @@ class Exporter:
if self.args.optimize:
assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
if self.args.int8 and tflite:
assert not getattr(model, "end2end", False), "TFLite INT8 export not supported for end2end models."
if edgetpu:
if not LINUX:
raise SystemError("Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler")
@ -239,6 +247,8 @@ class Exporter:
"WARNING ⚠ INT8 export requires a missing 'data' arg for calibration. "
f"Using default 'data={self.args.data}'."
)
if mnn and (IS_RASPBERRYPI or IS_JETSON):
raise SystemError("MNN export not supported on Raspberry Pi and NVIDIA Jetson")
# Input
im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device)
file = Path(
@ -333,8 +343,10 @@ class Exporter:
f[9], _ = self.export_tfjs()
if paddle: # PaddlePaddle
f[10], _ = self.export_paddle()
if mnn: # MNN
f[11], _ = self.export_mnn()
if ncnn: # NCNN
f[11], _ = self.export_ncnn()
f[12], _ = self.export_ncnn()
# Finish
f = [str(x) for x in f if x] # filter out '' and None
@ -541,6 +553,32 @@ class Exporter:
yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
return f, None
@try_export
def export_mnn(self, prefix=colorstr("MNN:")):
"""YOLOv8 MNN export using MNN https://github.com/alibaba/MNN."""
f_onnx, _ = self.export_onnx() # get onnx model first
check_requirements("MNN>=2.9.6")
import MNN # noqa
from MNN.tools import mnnconvert
# Setup and checks
LOGGER.info(f"\n{prefix} starting export with MNN {MNN.version()}...")
assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
f = str(self.file.with_suffix(".mnn")) # MNN model file
args = ["", "-f", "ONNX", "--modelFile", f_onnx, "--MNNModel", f, "--bizCode", json.dumps(self.metadata)]
if self.args.int8:
args.append("--weightQuantBits")
args.append("8")
if self.args.half:
args.append("--fp16")
mnnconvert.convert(args)
# remove scratch file for model convert optimize
convert_scratch = Path(self.file.parent / ".__convert_external_data.bin")
if convert_scratch.exists():
convert_scratch.unlink()
return f, None
@try_export
def export_ncnn(self, prefix=colorstr("NCNN:")):
"""YOLO NCNN export using PNNX https://github.com/pnnx/pnnx."""
@ -755,7 +793,7 @@ class Exporter:
LOGGER.warning(f"{prefix} WARNING ⚠ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
profile = builder.create_optimization_profile()
min_shape = (1, shape[1], 32, 32) # minimum input shape
max_shape = (*shape[:2], *(max(1, self.args.workspace) * d for d in shape[2:])) # max input shape
max_shape = (*shape[:2], *(int(max(1, self.args.workspace) * d) for d in shape[2:])) # max input shape
for inp in inputs:
profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
config.add_optimization_profile(profile)
@ -890,8 +928,10 @@ class Exporter:
tmp_file = f / "tmp_tflite_int8_calibration_images.npy" # int8 calibration images file
if self.args.data:
f.mkdir()
images = [batch["img"].permute(0, 2, 3, 1) for batch in self.get_int8_calibration_dataloader(prefix)]
images = torch.cat(images, 0).float()
images = [batch["img"] for batch in self.get_int8_calibration_dataloader(prefix)]
images = torch.nn.functional.interpolate(torch.cat(images, 0).float(), size=self.imgsz).permute(
0, 2, 3, 1
)
np.save(str(tmp_file), images.numpy().astype(np.float32)) # BHWC
np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]]

@ -26,6 +26,7 @@ Usage - formats:
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
yolov8n.mnn # MNN
yolov8n_ncnn_model # NCNN
"""

@ -118,7 +118,7 @@ class BaseTrainer:
self.save_period = self.args.save_period
self.batch_size = self.args.batch
self.epochs = self.args.epochs
self.epochs = self.args.epochs or 100 # in case users accidentally pass epochs=None with timed training
self.start_epoch = 0
if RANK == -1:
print_args(vars(self.args))
@ -791,6 +791,8 @@ class BaseTrainer:
else: # weight (with decay)
g[0].append(param)
optimizers = {"Adam", "Adamax", "AdamW", "NAdam", "RAdam", "RMSProp", "SGD", "auto"}
name = {x.lower(): x for x in optimizers}.get(name.lower(), None)
if name in {"Adam", "Adamax", "AdamW", "NAdam", "RAdam"}:
optimizer = getattr(optim, name, optim.Adam)(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
elif name == "RMSProp":
@ -799,9 +801,8 @@ class BaseTrainer:
optimizer = optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
else:
raise NotImplementedError(
f"Optimizer '{name}' not found in list of available optimizers "
f"[Adam, AdamW, NAdam, RAdam, RMSProp, SGD, auto]."
"To request support for addition optimizers please visit https://github.com/ultralytics/ultralytics."
f"Optimizer '{name}' not found in list of available optimizers {optimizers}. "
"Request support for addition optimizers at https://github.com/ultralytics/ultralytics."
)
optimizer.add_param_group({"params": g[0], "weight_decay": decay}) # add g0 with weight_decay

@ -17,6 +17,7 @@ Usage - formats:
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
yolov8n.mnn # MNN
yolov8n_ncnn_model # NCNN
"""

@ -854,6 +854,7 @@ class SAM2Model(torch.nn.Module):
mask_inputs,
output_dict,
num_frames,
track_in_reverse,
prev_sam_mask_logits,
):
"""Performs a single tracking step, updating object masks and memory features based on current frame inputs."""

@ -478,7 +478,7 @@ class Predictor(BasePredictor):
results = []
for masks, orig_img, img_path in zip([pred_masks], orig_imgs, self.batch[0]):
if len(masks) == 0:
masks = None
masks, pred_bboxes = None, torch.zeros((0, 6), device=pred_masks.device)
else:
masks = ops.scale_masks(masks[None].float(), orig_img.shape[:2], padding=False)[0]
masks = masks > self.model.mask_threshold # to bool

@ -59,21 +59,22 @@ class AutoBackend(nn.Module):
range of formats, each with specific naming conventions as outlined below:
Supported Formats and Naming Conventions:
| Format | File Suffix |
|-----------------------|------------------|
| PyTorch | *.pt |
| TorchScript | *.torchscript |
| ONNX Runtime | *.onnx |
| ONNX OpenCV DNN | *.onnx (dnn=True)|
| OpenVINO | *openvino_model/ |
| CoreML | *.mlpackage |
| TensorRT | *.engine |
| TensorFlow SavedModel | *_saved_model |
| TensorFlow GraphDef | *.pb |
| TensorFlow Lite | *.tflite |
| TensorFlow Edge TPU | *_edgetpu.tflite |
| PaddlePaddle | *_paddle_model |
| NCNN | *_ncnn_model |
| Format | File Suffix |
|-----------------------|-------------------|
| PyTorch | *.pt |
| TorchScript | *.torchscript |
| ONNX Runtime | *.onnx |
| ONNX OpenCV DNN | *.onnx (dnn=True) |
| OpenVINO | *openvino_model/ |
| CoreML | *.mlpackage |
| TensorRT | *.engine |
| TensorFlow SavedModel | *_saved_model/ |
| TensorFlow GraphDef | *.pb |
| TensorFlow Lite | *.tflite |
| TensorFlow Edge TPU | *_edgetpu.tflite |
| PaddlePaddle | *_paddle_model/ |
| MNN | *.mnn |
| NCNN | *_ncnn_model/ |
This class offers dynamic backend switching capabilities based on the input model format, making it easier to deploy
models across various platforms.
@ -120,6 +121,7 @@ class AutoBackend(nn.Module):
edgetpu,
tfjs,
paddle,
mnn,
ncnn,
triton,
) = self._model_type(w)
@ -189,10 +191,32 @@ class AutoBackend(nn.Module):
check_requirements("numpy==1.23.5")
import onnxruntime
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cuda else ["CPUExecutionProvider"]
providers = onnxruntime.get_available_providers()
if not cuda and "CUDAExecutionProvider" in providers:
providers.remove("CUDAExecutionProvider")
elif cuda and "CUDAExecutionProvider" not in providers:
LOGGER.warning("WARNING ⚠ Failed to start ONNX Runtime session with CUDA. Falling back to CPU...")
device = torch.device("cpu")
cuda = False
LOGGER.info(f"Preferring ONNX Runtime {providers[0]}")
session = onnxruntime.InferenceSession(w, providers=providers)
output_names = [x.name for x in session.get_outputs()]
metadata = session.get_modelmeta().custom_metadata_map
dynamic = isinstance(session.get_outputs()[0].shape[0], str)
if not dynamic:
io = session.io_binding()
bindings = []
for output in session.get_outputs():
y_tensor = torch.empty(output.shape, dtype=torch.float16 if fp16 else torch.float32).to(device)
io.bind_output(
name=output.name,
device_type=device.type,
device_id=device.index if cuda else 0,
element_type=np.float16 if fp16 else np.float32,
shape=tuple(y_tensor.shape),
buffer_ptr=y_tensor.data_ptr(),
)
bindings.append(y_tensor)
# OpenVINO
elif xml:
@ -345,6 +369,7 @@ class AutoBackend(nn.Module):
model_path=w,
experimental_delegates=[load_delegate(delegate, options={"device": device})],
)
device = "cpu" # Required, otherwise PyTorch will try to use the wrong device
else: # TFLite
LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")
interpreter = Interpreter(model_path=w) # load TFLite model
@ -380,6 +405,26 @@ class AutoBackend(nn.Module):
output_names = predictor.get_output_names()
metadata = w.parents[1] / "metadata.yaml"
# MNN
elif mnn:
LOGGER.info(f"Loading {w} for MNN inference...")
check_requirements("MNN") # requires MNN
import os
import MNN
config = {}
config["precision"] = "low"
config["backend"] = "CPU"
config["numThread"] = (os.cpu_count() + 1) // 2
rt = MNN.nn.create_runtime_manager((config,))
net = MNN.nn.load_module_from_file(w, [], [], runtime_manager=rt, rearrange=True)
def torch_to_mnn(x):
return MNN.expr.const(x.data_ptr(), x.shape)
metadata = json.loads(net.get_info()["bizCode"])
# NCNN
elif ncnn:
LOGGER.info(f"Loading {w} for NCNN inference...")
@ -476,8 +521,22 @@ class AutoBackend(nn.Module):
# ONNX Runtime
elif self.onnx:
im = im.cpu().numpy() # torch to numpy
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
if self.dynamic:
im = im.cpu().numpy() # torch to numpy
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
else:
if not self.cuda:
im = im.cpu()
self.io.bind_input(
name="images",
device_type=im.device.type,
device_id=im.device.index if im.device.type == "cuda" else 0,
element_type=np.float16 if self.fp16 else np.float32,
shape=tuple(im.shape),
buffer_ptr=im.data_ptr(),
)
self.session.run_with_iobinding(self.io)
y = self.bindings
# OpenVINO
elif self.xml:
@ -553,6 +612,12 @@ class AutoBackend(nn.Module):
self.predictor.run()
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
# MNN
elif self.mnn:
input_var = self.torch_to_mnn(im)
output_var = self.net.onForward([input_var])
y = [x.read() for x in output_var]
# NCNN
elif self.ncnn:
mat_in = self.pyncnn.Mat(im[0].cpu().numpy())
@ -598,6 +663,9 @@ class AutoBackend(nn.Module):
else:
x[:, [0, 2]] *= w
x[:, [1, 3]] *= h
if self.task == "pose":
x[:, 5::3] *= w
x[:, 6::3] *= h
y.append(x)
# TF segment fixes: export is reversed vs ONNX export and protos are transposed
if len(y) == 2: # segment with (det, proto) output order reversed

@ -246,9 +246,21 @@ class Pose(Detect):
def kpts_decode(self, bs, kpts):
"""Decodes keypoints."""
ndim = self.kpt_shape[1]
if self.export: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
y = kpts.view(bs, *self.kpt_shape, -1)
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
if self.export:
if self.format in {
"tflite",
"edgetpu",
}: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
# Precompute normalization factor to increase numerical stability
y = kpts.view(bs, *self.kpt_shape, -1)
grid_h, grid_w = self.shape[2], self.shape[3]
grid_size = torch.tensor([grid_w, grid_h], device=y.device).reshape(1, 2, 1)
norm = self.strides / (self.stride[0] * grid_size)
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * norm
else:
# NCNN fix
y = kpts.view(bs, *self.kpt_shape, -1)
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
if ndim == 3:
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
return a.view(bs, self.nk, -1)

@ -19,7 +19,6 @@ class AIGym(BaseSolution):
up_angle (float): Angle threshold for considering the 'up' position of an exercise.
down_angle (float): Angle threshold for considering the 'down' position of an exercise.
kpts (List[int]): Indices of keypoints used for angle calculation.
lw (int): Line width for drawing annotations.
annotator (Annotator): Object for drawing annotations on the image.
Methods:
@ -51,7 +50,6 @@ class AIGym(BaseSolution):
self.up_angle = float(self.CFG["up_angle"]) # Pose up predefined angle to consider up pose
self.down_angle = float(self.CFG["down_angle"]) # Pose down predefined angle to consider down pose
self.kpts = self.CFG["kpts"] # User selected kpts of workouts storage for further usage
self.lw = self.CFG["line_width"] # Store line_width for usage
def monitor(self, im0):
"""
@ -84,14 +82,14 @@ class AIGym(BaseSolution):
self.stage += ["-"] * new_human
# Initialize annotator
self.annotator = Annotator(im0, line_width=self.lw)
self.annotator = Annotator(im0, line_width=self.line_width)
# Enumerate over keypoints
for ind, k in enumerate(reversed(tracks.keypoints.data)):
# Get keypoints and estimate the angle
kpts = [k[int(self.kpts[i])].cpu() for i in range(3)]
self.angle[ind] = self.annotator.estimate_pose_angle(*kpts)
im0 = self.annotator.draw_specific_points(k, self.kpts, radius=self.lw * 3)
im0 = self.annotator.draw_specific_points(k, self.kpts, radius=self.line_width * 3)
# Determine stage and count logic based on angle thresholds
if self.angle[ind] < self.down_angle:

@ -5,7 +5,7 @@ from collections import defaultdict
import cv2
from ultralytics import YOLO
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_SOL_DICT, LOGGER
from ultralytics.utils import ASSETS_URL, DEFAULT_CFG_DICT, DEFAULT_SOL_DICT, LOGGER
from ultralytics.utils.checks import check_imshow, check_requirements
@ -42,8 +42,12 @@ class BaseSolution:
>>> solution.display_output(image)
"""
def __init__(self, **kwargs):
"""Initializes the BaseSolution class with configuration settings and YOLO model for Ultralytics solutions."""
def __init__(self, IS_CLI=False, **kwargs):
"""
Initializes the `BaseSolution` class with configuration settings and the YOLO model for Ultralytics solutions.
IS_CLI (optional): Enables CLI mode if set.
"""
check_requirements("shapely>=2.0.0")
from shapely.geometry import LineString, Point, Polygon
@ -63,9 +67,20 @@ class BaseSolution:
) # Store line_width for usage
# Load Model and store classes names
self.model = YOLO(self.CFG["model"] if self.CFG["model"] else "yolov8n.pt")
if self.CFG["model"] is None:
self.CFG["model"] = "yolo11n.pt"
self.model = YOLO(self.CFG["model"])
self.names = self.model.names
if IS_CLI: # for CLI, download the source and init video writer
if self.CFG["source"] is None:
d_s = "solutions_ci_demo.mp4" if "-pose" not in self.CFG["model"] else "solution_ci_pose_demo.mp4"
LOGGER.warning(f" WARNING: source not provided. using default source {ASSETS_URL}/{d_s}")
from ultralytics.utils.downloads import safe_download
safe_download(f"{ASSETS_URL}/{d_s}") # download source from ultralytics assets
self.CFG["source"] = d_s # set default source
# Initialize environment and region setup
self.env_check = check_imshow(warn=True)
self.track_history = defaultdict(list)

@ -37,6 +37,7 @@ ARGV = sys.argv or ["", ""] # sometimes sys.argv = []
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLO
ASSETS = ROOT / "assets" # default images
ASSETS_URL = "https://github.com/ultralytics/assets/releases/download/v0.0.0" # assets GitHub URL
DEFAULT_CFG_PATH = ROOT / "cfg/default.yaml"
DEFAULT_SOL_CFG_PATH = ROOT / "cfg/solutions/default.yaml" # Ultralytics solutions yaml path
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLO multiprocessing threads

@ -21,6 +21,7 @@ TensorFlow Lite | `tflite` | yolov8n.tflite
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov8n_web_model/
PaddlePaddle | `paddle` | yolov8n_paddle_model/
MNN | `mnn` | yolov8n.mnn
NCNN | `ncnn` | yolov8n_ncnn_model/
"""
@ -107,11 +108,15 @@ def benchmark(
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 TensorFlow exports not supported by onnx2tf yet"
if i in {9, 10}: # TF EdgeTPU and TF.js
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 TensorFlow exports not supported by onnx2tf yet"
if i in {11}: # Paddle
if i == 11: # Paddle
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 Paddle exports not supported yet"
assert not is_end2end, "End-to-end models not supported by PaddlePaddle yet"
assert LINUX or MACOS, "Windows Paddle exports not supported yet"
if i in {12}: # NCNN
if i == 12: # MNN
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 MNN exports not supported yet"
assert not IS_RASPBERRYPI, "MNN export not supported on Raspberry Pi"
assert not IS_JETSON, "MNN export not supported on NVIDIA Jetson"
if i == 13: # NCNN
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 NCNN exports not supported yet"
if "cpu" in device.type:
assert cpu, "inference not supported on CPU"
@ -132,7 +137,7 @@ def benchmark(
assert model.task != "pose" or i != 7, "GraphDef Pose inference is not supported"
assert i not in {9, 10}, "inference not supported" # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
if i in {12}:
if i in {13}:
assert not is_end2end, "End-to-end torch.topk operation is not supported for NCNN prediction yet"
exported_model.predict(ASSETS / "bus.jpg", imgsz=imgsz, device=device, half=half)

@ -23,7 +23,6 @@ from ultralytics.utils import (
AUTOINSTALL,
IS_COLAB,
IS_GIT_DIR,
IS_JUPYTER,
IS_KAGGLE,
IS_PIP_PACKAGE,
LINUX,
@ -569,11 +568,8 @@ def check_yolo(verbose=True, device=""):
from ultralytics.utils.torch_utils import select_device
if IS_JUPYTER:
if check_requirements("wandb", install=False):
os.system("pip uninstall -y wandb") # uninstall wandb: unwanted account creation prompt with infinite hang
if IS_COLAB:
shutil.rmtree("sample_data", ignore_errors=True) # remove colab /sample_data directory
if IS_COLAB:
shutil.rmtree("sample_data", ignore_errors=True) # remove colab /sample_data directory
if verbose:
# System info

@ -176,7 +176,7 @@ class Bboxes:
length as the number of bounding boxes.
"""
if isinstance(index, int):
return Bboxes(self.bboxes[index].view(1, -1))
return Bboxes(self.bboxes[index].reshape(1, -1))
b = self.bboxes[index]
assert b.ndim == 2, f"Indexing on Bboxes with {index} failed to return a matrix!"
return Bboxes(b)

@ -1,13 +1,16 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import subprocess
from ultralytics.cfg import TASK2DATA, TASK2METRIC, get_save_dir
from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, NUM_THREADS, checks
def run_ray_tune(
model, space: dict = None, grace_period: int = 10, gpu_per_trial: int = None, max_samples: int = 10, **train_args
model,
space: dict = None,
grace_period: int = 10,
gpu_per_trial: int = None,
max_samples: int = 10,
**train_args,
):
"""
Runs hyperparameter tuning using Ray Tune.
@ -39,7 +42,7 @@ def run_ray_tune(
train_args = {}
try:
subprocess.run("pip install ray[tune]".split(), check=True) # do not add single quotes here
checks.check_requirements("ray[tune]")
import ray
from ray import tune

Loading…
Cancel
Save