diff --git a/README.md b/README.md
index e13ef56450..704c04b794 100644
--- a/README.md
+++ b/README.md
@@ -87,14 +87,25 @@ YOLOv8 may also be used directly in a Python environment, and accepts the same [
from ultralytics import YOLO
# Load a model
-model = YOLO("yolov8n.yaml") # build a new model from scratch
-model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
-
-# Use the model
-model.train(data="coco8.yaml", epochs=3) # train the model
-metrics = model.val() # evaluate model performance on the validation set
-results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
-path = model.export(format="onnx") # export the model to ONNX format
+model = YOLO("yolov8n.pt")
+
+# Train the model
+train_results = model.train(
+ data="coco8.yaml", # path to dataset YAML
+ epochs=100, # number of training epochs
+ imgsz=640, # training image size
+ device="cpu", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
+)
+
+# Evaluate model performance on the validation set
+metrics = model.val()
+
+# Perform object detection on an image
+results = model("path/to/image.jpg")
+results[0].show()
+
+# Export the model to ONNX format
+path = model.export(format="onnx") # return path to exported model
```
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
@@ -139,23 +150,6 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
-Detection (Open Image V7)
-
-See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/), which include 600 pre-trained classes.
-
-| Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
A100 TensorRT
(ms) | params
(M) | FLOPs
(B) |
-| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
-| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
-| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
-| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
-| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
-| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
-
-- **mAPval** values are for single-model single-scale on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/) dataset.
Reproduce by `yolo val detect data=open-images-v7.yaml device=0`
-- **Speed** averaged over Open Image V7 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu`
-
-
-
Segmentation (COCO)
See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
diff --git a/README.zh-CN.md b/README.zh-CN.md
index 4319c0dff8..1e7b972762 100644
--- a/README.zh-CN.md
+++ b/README.zh-CN.md
@@ -89,14 +89,25 @@ YOLOv8 也可以在 Python 环境中直接使用,并接受与上述 CLI 示例
from ultralytics import YOLO
# 加载模型
-model = YOLO("yolov8n.yaml") # 从头开始构建新模型
-model = YOLO("yolov8n.pt") # 加载预训练模型(建议用于训练)
-
-# 使用模型
-model.train(data="coco8.yaml", epochs=3) # 训练模型
-metrics = model.val() # 在验证集上评估模型性能
-results = model("https://ultralytics.com/images/bus.jpg") # 对图像进行预测
-success = model.export(format="onnx") # 将模型导出为 ONNX 格式
+model = YOLO("yolov8n.pt")
+
+# 训练模型
+train_results = model.train(
+ data="coco8.yaml", # 数据配置文件的路径
+ epochs=100, # 训练的轮数
+ imgsz=640, # 训练图像大小
+ device="cpu", # 运行的设备,例如 device=0 或 device=0,1,2,3 或 device=cpu
+)
+
+# 在验证集上评估模型性能
+metrics = model.val()
+
+# 对图像进行目标检测
+results = model("path/to/image.jpg")
+results[0].show()
+
+# 将模型导出为 ONNX 格式
+path = model.export(format="onnx") # 返回导出的模型路径
```
查看 YOLOv8 [Python 文档](https://docs.ultralytics.com/usage/python/)以获取更多示例。
@@ -141,23 +152,6 @@ Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟
-检测(Open Image V7)
-
-查看[检测文档](https://docs.ultralytics.com/tasks/detect/)以获取这些在[Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/)上训练的模型的使用示例,其中包括600个预训练类别。
-
-| 模型 | 尺寸
(像素) | mAP验证
50-95 | 速度
CPU ONNX
(毫秒) | 速度
A100 TensorRT
(毫秒) | 参数
(M) | 浮点运算
(B) |
-| ----------------------------------------------------------------------------------------- | ------------------- | --------------------- | ------------------------------- | ------------------------------------ | ---------------- | -------------------- |
-| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
-| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
-| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
-| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
-| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
-
-- **mAP验证** 值适用于在[Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/)数据集上的单模型单尺度。
通过 `yolo val detect data=open-images-v7.yaml device=0` 以复现。
-- **速度** 在使用[Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)实例对Open Image V7验证图像进行平均测算。
通过 `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu` 以复现。
-
-
-
分割 (COCO)
查看[分割文档](https://docs.ultralytics.com/tasks/segment/)以获取这些在[COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/)上训练的模型的使用示例,其中包括80个预训练类别。
diff --git a/docs/en/modes/predict.md b/docs/en/modes/predict.md
index 3bda0c079b..5ca5dab9d8 100644
--- a/docs/en/modes/predict.md
+++ b/docs/en/modes/predict.md
@@ -61,7 +61,7 @@ Ultralytics YOLO models return either a Python list of `Results` objects, or a m
model = YOLO("yolov8n.pt") # pretrained YOLOv8n model
# Run batched inference on a list of images
- results = model(["im1.jpg", "im2.jpg"]) # return a list of Results objects
+ results = model(["image1.jpg", "image2.jpg"]) # return a list of Results objects
# Process results list
for result in results:
@@ -83,7 +83,7 @@ Ultralytics YOLO models return either a Python list of `Results` objects, or a m
model = YOLO("yolov8n.pt") # pretrained YOLOv8n model
# Run batched inference on a list of images
- results = model(["im1.jpg", "im2.jpg"], stream=True) # return a generator of Results objects
+ results = model(["image1.jpg", "image2.jpg"], stream=True) # return a generator of Results objects
# Process results generator
for result in results:
@@ -109,8 +109,8 @@ YOLOv8 can process different types of input sources for inference, as shown in t
| image | `'image.jpg'` | `str` or `Path` | Single image file. |
| URL | `'https://ultralytics.com/images/bus.jpg'` | `str` | URL to an image. |
| screenshot | `'screen'` | `str` | Capture a screenshot. |
-| PIL | `Image.open('im.jpg')` | `PIL.Image` | HWC format with RGB channels. |
-| OpenCV | `cv2.imread('im.jpg')` | `np.ndarray` | HWC format with BGR channels `uint8 (0-255)`. |
+| PIL | `Image.open('image.jpg')` | `PIL.Image` | HWC format with RGB channels. |
+| OpenCV | `cv2.imread('image.jpg')` | `np.ndarray` | HWC format with BGR channels `uint8 (0-255)`. |
| numpy | `np.zeros((640,1280,3))` | `np.ndarray` | HWC format with BGR channels `uint8 (0-255)`. |
| torch | `torch.zeros(16,3,320,640)` | `torch.Tensor` | BCHW format with RGB channels `float32 (0.0-1.0)`. |
| CSV | `'sources.csv'` | `str` or `Path` | CSV file containing paths to images, videos, or directories. |
@@ -710,16 +710,16 @@ When using YOLO models in a multi-threaded application, it's important to instan
from ultralytics import YOLO
- def thread_safe_predict(image_path):
+ def thread_safe_predict(model, image_path):
"""Performs thread-safe prediction on an image using a locally instantiated YOLO model."""
- local_model = YOLO("yolov8n.pt")
- results = local_model.predict(image_path)
+ model = YOLO(model)
+ results = model.predict(image_path)
# Process results
# Starting threads that each have their own model instance
- Thread(target=thread_safe_predict, args=("image1.jpg",)).start()
- Thread(target=thread_safe_predict, args=("image2.jpg",)).start()
+ Thread(target=thread_safe_predict, args=("yolov8n.pt", "image1.jpg")).start()
+ Thread(target=thread_safe_predict, args=("yolov8n.pt", "image2.jpg")).start()
```
For an in-depth look at thread-safe inference with YOLO models and step-by-step instructions, please refer to our [YOLO Thread-Safe Inference Guide](../guides/yolo-thread-safe-inference.md). This guide will provide you with all the necessary information to avoid common pitfalls and ensure that your multi-threaded inference runs smoothly.
diff --git a/docs/en/modes/track.md b/docs/en/modes/track.md
index cfeb8c9084..c222e592b7 100644
--- a/docs/en/modes/track.md
+++ b/docs/en/modes/track.md
@@ -290,63 +290,50 @@ Finally, after all threads have completed their task, the windows displaying the
from ultralytics import YOLO
+ # Define model names and video sources
+ MODEL_NAMES = ["yolov8n.pt", "yolov8n-seg.pt"]
+ SOURCES = ["path/to/video1.mp4", 0] # local video, 0 for webcam
- def run_tracker_in_thread(filename, model, file_index):
- """
- Runs a video file or webcam stream concurrently with the YOLOv8 model using threading.
- This function captures video frames from a given file or camera source and utilizes the YOLOv8 model for object
- tracking. The function runs in its own thread for concurrent processing.
+ def run_tracker_in_thread(model_name, filename, index):
+ """
+ Runs a video file or webcam stream concurrently with the YOLOv8 model using threading. This function captures video
+ frames from a given file or camera source and utilizes the YOLOv8 model for object tracking. The function runs in
+ its own thread for concurrent processing.
Args:
filename (str): The path to the video file or the identifier for the webcam/external camera source.
model (obj): The YOLOv8 model object.
- file_index (int): An index to uniquely identify the file being processed, used for display purposes.
-
- Note:
- Press 'q' to quit the video display window.
+ index (int): An index to uniquely identify the file being processed, used for display purposes.
"""
- video = cv2.VideoCapture(filename) # Read the video file
+ model = YOLO(model_name)
+ video = cv2.VideoCapture(filename)
while True:
- ret, frame = video.read() # Read the video frames
-
- # Exit the loop if no more frames in either video
+ ret, frame = video.read()
if not ret:
break
- # Track objects in frames if available
results = model.track(frame, persist=True)
res_plotted = results[0].plot()
- cv2.imshow(f"Tracking_Stream_{file_index}", res_plotted)
+ cv2.imshow(f"Tracking_Stream_{index}", res_plotted)
- key = cv2.waitKey(1)
- if key == ord("q"):
+ if cv2.waitKey(1) == ord("q"):
break
- # Release video sources
video.release()
- # Load the models
- model1 = YOLO("yolov8n.pt")
- model2 = YOLO("yolov8n-seg.pt")
+ # Create and start tracker threads using a for loop
+ tracker_threads = []
+ for i, (video_file, model_name) in enumerate(zip(SOURCES, MODEL_NAMES), start=1):
+ thread = threading.Thread(target=run_tracker_in_thread, args=(model_name, video_file, i), daemon=True)
+ tracker_threads.append(thread)
+ thread.start()
- # Define the video files for the trackers
- video_file1 = "path/to/video1.mp4" # Path to video file, 0 for webcam
- video_file2 = 0 # Path to video file, 0 for webcam, 1 for external camera
-
- # Create the tracker threads
- tracker_thread1 = threading.Thread(target=run_tracker_in_thread, args=(video_file1, model1, 1), daemon=True)
- tracker_thread2 = threading.Thread(target=run_tracker_in_thread, args=(video_file2, model2, 2), daemon=True)
-
- # Start the tracker threads
- tracker_thread1.start()
- tracker_thread2.start()
-
- # Wait for the tracker threads to finish
- tracker_thread1.join()
- tracker_thread2.join()
+ # Wait for all tracker threads to finish
+ for thread in tracker_threads:
+ thread.join()
# Clean up and close windows
cv2.destroyAllWindows()
diff --git a/docs/en/yolov5/quickstart_tutorial.md b/docs/en/yolov5/quickstart_tutorial.md
index f8cabb9f23..582dfcbda8 100644
--- a/docs/en/yolov5/quickstart_tutorial.md
+++ b/docs/en/yolov5/quickstart_tutorial.md
@@ -44,8 +44,8 @@ Harness `detect.py` for versatile inference on various sources. It automatically
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
- img.jpg # image
- vid.mp4 # video
+ image.jpg # image
+ video.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images