[WIP] Model interface (#68)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
pull/70/head
Ayush Chaurasia 2 years ago committed by GitHub
parent e6737f1207
commit 7ae45c6cc4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      ultralytics/yolo/__init__.py
  2. 89
      ultralytics/yolo/engine/model.py
  3. 22
      ultralytics/yolo/engine/trainer.py
  4. 4
      ultralytics/yolo/v8/classify/train.py
  5. 2
      ultralytics/yolo/v8/detect/train.py
  6. 2
      ultralytics/yolo/v8/segment/train.py

@ -1,3 +1,5 @@
from ultralytics.yolo import v8
from .engine.model import YOLO
from .engine.trainer import BaseTrainer
from .engine.validator import BaseValidator

@ -1,55 +1,45 @@
"""
Top-level YOLO model interface. First principle usage example - https://github.com/ultralytics/ultralytics/issues/13
"""
import torch
import yaml
from ultralytics.yolo.utils import LOGGER
from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.modeling import get_model
from ultralytics.yolo.utils.modeling import attempt_load_weights
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel, DetectionModel, SegmentationModel
# map head: [model, trainer]
MODEL_MAP = {
"classify": [ClassificationModel, 'yolo.VERSION.classify.train.ClassificationTrainer'],
"detect": [ClassificationModel, 'yolo.VERSION.classify.train.ClassificationTrainer'], # temp
"segment": []}
"classify": [ClassificationModel, 'yolo.VERSION.classify.ClassificationTrainer'],
"detect": [DetectionModel, 'yolo.VERSION.detect.DetectionTrainer'],
"segment": [SegmentationModel, 'yolo.VERSION.segment.SegmentationTrainer']}
class YOLO:
def __init__(self, task=None, version=8) -> None:
def __init__(self, version=8) -> None:
self.version = version
self.ModelClass = None
self.TrainerClass = None
self.model = None
self.pretrained_weights = None
if task:
if task.lower() not in MODEL_MAP:
raise Exception(f"Unsupported task {task}. The supported tasks are: \n {MODEL_MAP.keys()}")
self.ModelClass, self.TrainerClass = MODEL_MAP[task]
self.TrainerClass = eval(self.trainer.replace("VERSION", f"v{self.version}"))
self.trainer = None
self.task = None
self.ckpt = None
def new(self, cfg: str):
cfg = check_yaml(cfg) # check YAML
if self.model:
self.model = self.model(cfg)
else:
with open(cfg, encoding='ascii', errors='ignore') as f:
cfg = yaml.safe_load(f) # model dict
self.ModelClass, self.TrainerClass = self._get_model_and_trainer(cfg["head"])
self.model = self.ModelClass(cfg) # initialize
with open(cfg, encoding='ascii', errors='ignore') as f:
cfg = yaml.safe_load(f) # model dict
self.ModelClass, self.TrainerClass, self.task = self._guess_model_trainer_and_task(cfg["head"][-1][-2])
self.model = self.ModelClass(cfg) # initialize
def load(self, weights, autodownload=True):
if not isinstance(self.pretrained_weights, type(None)):
LOGGER.info("Overwriting weights")
# TODO: weights = smart_file_loader(weights)
if self.model:
self.model.load(weights)
LOGGER.info("Checkpoint loaded successfully")
else:
self.model = get_model(weights)
self.ModelClass, self.TrainerClass = self._guess_model_and_trainer(list(self.model.named_children()))
self.pretrained_weights = weights
def load(self, weights):
self.ckpt = torch.load(weights, map_location="cpu")
self.task = self.ckpt["train_args"]["task"]
_, trainer_class_literal = MODEL_MAP[self.task]
self.TrainerClass = eval(trainer_class_literal.replace("VERSION", f"v{self.version}"))
self.model = attempt_load_weights(weights)
def reset(self):
for m in self.model.modules():
@ -61,16 +51,31 @@ class YOLO:
def train(self, **kwargs):
if 'data' not in kwargs:
raise Exception("data is required to train")
if not self.model:
if not self.model and not self.ckpt:
raise Exception("model not initialized. Use .new() or .load()")
# kwargs["model"] = self.model
trainer = self.TrainerClass(overrides=kwargs)
trainer.model = self.model
trainer.train()
def _guess_model_and_trainer(self, cfg):
kwargs["task"] = self.task
kwargs["mode"] = "train"
self.trainer = self.TrainerClass(overrides=kwargs)
# load pre-trained weights if found, else use the loaded model
self.trainer.model = self.trainer.load_model(weights=self.ckpt) if self.ckpt else self.model
self.trainer.train()
def resume(self, task=None, model=None):
if not task:
raise Exception(
"pass the task type and/or model(optional) from which you want to resume: `model.resume(task="
")`")
if task.lower() not in MODEL_MAP:
raise Exception(f"unrecognised task - {task}. Supported tasks are {MODEL_MAP.keys()}")
_, trainer_class_literal = MODEL_MAP[task.lower()]
self.TrainerClass = eval(trainer_class_literal.replace("VERSION", f"v{self.version}"))
self.trainer = self.TrainerClass(overrides={"task": task.lower(), "resume": model if model else True})
self.trainer.train()
def _guess_model_trainer_and_task(self, head):
# TODO: warn
head = cfg[-1][-2]
task = None
if head.lower() in ["classify", "classifier", "cls", "fc"]:
task = "classify"
if head.lower() in ["detect"]:
@ -81,11 +86,9 @@ class YOLO:
# warning: eval is unsafe. Use with caution
trainer_class = eval(trainer_class.replace("VERSION", f"v{self.version}"))
return model_class, trainer_class
return model_class, trainer_class, task
if __name__ == "__main__":
model = YOLO()
# model.new("assets/dummy_model.yaml")
model.load("yolov5n-cls.pt")
model.train(data="imagenette160", epochs=1, lr0=0.01)
def __call__(self, imgs):
if not self.model:
LOGGER.info("model not initialized!")
return self.model(imgs)

@ -8,7 +8,6 @@ from collections import defaultdict
from copy import deepcopy
from datetime import datetime
from pathlib import Path
from typing import Dict, Union
import numpy as np
import torch
@ -28,7 +27,6 @@ from ultralytics.yolo.utils import LOGGER, ROOT, TQDM_BAR_FORMAT, colorstr
from ultralytics.yolo.utils.checks import check_file, print_args
from ultralytics.yolo.utils.configs import get_config
from ultralytics.yolo.utils.files import get_latest_run, increment_path, save_yaml
from ultralytics.yolo.utils.modeling import get_model
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
@ -63,6 +61,7 @@ class BaseTrainer:
self.scaler = amp.GradScaler(enabled=self.device.type != 'cpu')
# Model and Dataloaders.
self.model = self.args.model
self.data = self.args.data
if self.data.endswith(".yaml"):
self.data = check_dataset_yaml(self.data)
@ -125,6 +124,7 @@ class BaseTrainer:
"""
# model
ckpt = self.setup_model()
self.model = self.model.to(self.device)
self.set_model_attributes()
if world_size > 1:
self.model = DDP(self.model, device_ids=[rank])
@ -288,13 +288,16 @@ class BaseTrainer:
"""
load/create/download model for any task
"""
model = self.args.model
if isinstance(self.model, torch.nn.Module): # if loaded model is passed
return
# We should improve the code flow here. This function looks hacky
model = self.model
pretrained = not (str(model).endswith(".yaml"))
# config
if not pretrained:
model = check_file(model)
ckpt = self.load_ckpt(model) if pretrained else None
self.model = self.load_model(model_cfg=None if pretrained else model, weights=ckpt).to(self.device) # model
self.model = self.load_model(model_cfg=None if pretrained else model, weights=ckpt) # model
return ckpt
def load_ckpt(self, ckpt):
@ -402,7 +405,7 @@ class BaseTrainer:
last = Path(check_file(resume) if isinstance(resume, str) else get_latest_run())
args_yaml = last.parent.parent / 'args.yaml' # train options yaml
if args_yaml.is_file():
args = self._get_config(args_yaml) # replace
args = get_config(args_yaml) # replace
args.model, args.resume, args.exist_ok = str(last), True, True # reinstate
self.args = args
@ -424,8 +427,7 @@ class BaseTrainer:
f'Resuming training from {self.args.model} from epoch {start_epoch} to {self.epochs} total epochs')
if self.epochs < start_epoch:
LOGGER.info(
f"{self.args.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs."
)
f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs.")
self.epochs += ckpt['epoch'] # finetune additional epochs
self.best_fitness = best_fitness
self.start_epoch = start_epoch
@ -460,9 +462,3 @@ def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias")
return optimizer
# Dummy validator
def val(trainer: BaseTrainer):
trainer.console.info("validating")
return {"metric_1": 0.1, "metric_2": 0.2, "fitness": 1}

@ -13,8 +13,10 @@ class ClassificationTrainer(BaseTrainer):
def set_model_attributes(self):
self.model.names = self.data["names"]
def load_model(self, model_cfg, weights):
def load_model(self, model_cfg=None, weights=None):
# TODO: why treat clf models as unique. We should have clf yamls?
if isinstance(weights, dict): # yolo ckpt
weights = weights["model"]
if weights and not weights.__class__.__name__.startswith("yolo"): # torchvision
model = weights
else:

@ -15,7 +15,7 @@ from .val import DetectionValidator
# BaseTrainer python usage
class DetectionTrainer(SegmentationTrainer):
def load_model(self, model_cfg, weights):
def load_model(self, model_cfg=None, weights=None):
model = DetectionModel(model_cfg or weights["model"].yaml,
ch=3,
nc=self.data["nc"],

@ -26,7 +26,7 @@ class SegmentationTrainer(BaseTrainer):
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
return batch
def load_model(self, model_cfg, weights):
def load_model(self, model_cfg=None, weights=None):
model = SegmentationModel(model_cfg or weights["model"].yaml,
ch=3,
nc=self.data["nc"],

Loading…
Cancel
Save