|
|
|
@ -2,12 +2,10 @@ import math |
|
|
|
|
import os |
|
|
|
|
import platform |
|
|
|
|
import time |
|
|
|
|
import random |
|
|
|
|
from contextlib import contextmanager |
|
|
|
|
from copy import deepcopy |
|
|
|
|
from pathlib import Path |
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
|
|
import thop |
|
|
|
|
import torch |
|
|
|
|
import torch.distributed as dist |
|
|
|
@ -200,20 +198,6 @@ def one_cycle(y1=0.0, y2=1.0, steps=100): |
|
|
|
|
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf |
|
|
|
|
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 |
|
|
|
|
|
|
|
|
|
def init_seeds(seed=0, deterministic=False): |
|
|
|
|
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html |
|
|
|
|
random.seed(seed) |
|
|
|
|
np.random.seed(seed) |
|
|
|
|
torch.manual_seed(seed) |
|
|
|
|
torch.cuda.manual_seed(seed) |
|
|
|
|
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe |
|
|
|
|
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287 |
|
|
|
|
if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213 |
|
|
|
|
torch.use_deterministic_algorithms(True) |
|
|
|
|
torch.backends.cudnn.deterministic = True |
|
|
|
|
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' |
|
|
|
|
os.environ['PYTHONHASHSEED'] = str(seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ModelEMA: |
|
|
|
|
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models |
|
|
|
|