`ultralytics 8.0.51` add assets and CI actions (#1296)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Paul Kehrer <paulhkehrer@gmail.com>
pull/861/head v8.0.51
Glenn Jocher 2 years ago committed by GitHub
parent f0d8e4718b
commit 790f9c067c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 33
      .github/workflows/ci.yaml
  2. 55
      .github/workflows/greetings.yml
  3. 67
      .github/workflows/publish.yml
  4. 47
      .github/workflows/stale.yml
  5. 2
      MANIFEST.in
  6. 3
      requirements.txt
  7. 2
      ultralytics/__init__.py
  8. BIN
      ultralytics/assets/bus.jpg
  9. BIN
      ultralytics/assets/zidane.jpg
  10. 26
      ultralytics/nn/autobackend.py
  11. 3
      ultralytics/nn/modules.py
  12. 10
      ultralytics/nn/tasks.py
  13. 3
      ultralytics/tracker/utils/matching.py
  14. 2
      ultralytics/yolo/cfg/__init__.py
  15. 9
      ultralytics/yolo/data/utils.py
  16. 4
      ultralytics/yolo/engine/exporter.py
  17. 4
      ultralytics/yolo/engine/model.py
  18. 14
      ultralytics/yolo/engine/results.py
  19. 80
      ultralytics/yolo/utils/__init__.py
  20. 12
      ultralytics/yolo/utils/checks.py
  21. 3
      ultralytics/yolo/utils/plotting.py

@ -26,16 +26,7 @@ jobs:
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Get cache dir # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
id: pip-cache
run: echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT
shell: bash # for Windows compatibility
- name: Cache pip
uses: actions/cache@v3
with:
path: ${{ steps.pip-cache.outputs.dir }}
key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
restore-keys: ${{ runner.os }}-${{ matrix.python-version }}-pip-
cache: 'pip' # caching pip dependencies
- name: Install requirements
shell: bash # for Windows compatibility
run: |
@ -76,16 +67,7 @@ jobs:
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Get cache dir # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
id: pip-cache
run: echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT
shell: bash # for Windows compatibility
- name: Cache pip
uses: actions/cache@v3
with:
path: ${{ steps.pip-cache.outputs.dir }}
key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
restore-keys: ${{ runner.os }}-${{ matrix.python-version }}-pip-
cache: 'pip' # caching pip dependencies
- name: Install requirements
shell: bash # for Windows compatibility
run: |
@ -145,16 +127,7 @@ jobs:
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Get cache dir # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
id: pip-cache
run: echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT
shell: bash # for Windows compatibility
- name: Cache pip
uses: actions/cache@v3
with:
path: ${{ steps.pip-cache.outputs.dir }}
key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
restore-keys: ${{ runner.os }}-${{ matrix.python-version }}-pip-
cache: 'pip' # caching pip dependencies
- name: Install requirements
shell: bash # for Windows compatibility
run: |

@ -0,0 +1,55 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
name: Greetings
on:
pull_request_target:
types: [opened]
issues:
types: [opened]
jobs:
greeting:
runs-on: ubuntu-latest
steps:
- uses: actions/first-interaction@v1
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
pr-message: |
👋 Hello @${{ github.actor }}, thank you for submitting a YOLOv8 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
- ✅ Verify your PR is **up-to-date** with `ultralytics/ultralytics` `main` branch. If your PR is behind you can update your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
- ✅ Verify all YOLOv8 Continuous Integration (CI) **checks are passing**.
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
See our [Contributing Guide](https://github.com/ultralytics/ultralytics/blob/main/CONTRIBUTING.md) for details and let us know if you have any questions!
issue-message: |
👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv8 🚀! We recommend a visit to the [YOLOv8 Docs](https://docs.ultralytics.com) for new users where you can find many [Python](https://docs.ultralytics.com/python/) and [CLI](https://docs.ultralytics.com/cli/) usage examples and where many of the most common questions may already be answered.
If this is a 🐛 Bug Report, please provide a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us debug it.
If this is a custom training ❓ Question, please provide as much information as possible, including dataset image examples and training logs, and verify you are following our [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results).
## Install
Pip install the `ultralytics` package including all [requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**Python>=3.7**](https://www.python.org/) environment with [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
pip install ultralytics
```
## Environments
YOLOv8 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Notebooks** with free GPU: <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a> <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
## Status
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml?query=event%3Aschedule"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
If this badge is green, all [Ultralytics CI](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml?query=event%3Aschedule) tests are currently passing. CI tests verify correct operation of all YOLOv8 modes and tasks on macOS, Windows, and Ubuntu every 24 hours and on every commit.

@ -0,0 +1,67 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
# Publish pip package to PyPI https://pypi.org/project/ultralytics/ and Docs to https://docs.ultralytics.com
name: Publish to PyPI and Deploy Docs
on:
workflow_dispatch:
inputs:
pypi:
type: boolean
description: Publish to PyPI
docs:
type: boolean
description: Deploy Docs
push:
branches: [main]
jobs:
publish:
if: github.repository == 'ultralytics/ultralytics' && github.actor == 'glenn-jocher'
name: Publish
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Set up Python environment
uses: actions/setup-python@v4
with:
python-version: '3.10'
cache: 'pip' # caching pip dependencies
- name: Install dependencies
run: |
python -m pip install --upgrade pip wheel build twine
pip install -e '.[dev]' --extra-index-url https://download.pytorch.org/whl/cpu
- name: Check PyPI version
shell: python
run: |
import pkg_resources as pkg
import ultralytics
import os
from ultralytics.yolo.utils.checks import check_latest_pypi_version
v_local = pkg.parse_version(ultralytics.__version__).release
v_pypi = pkg.parse_version(check_latest_pypi_version()).release
print(f'Local version is {v_local}')
print(f'PyPI version is {v_pypi}')
d = [a - b for a, b in zip(v_local, v_pypi)] # diff
increment = (d[0] == d[1] == 0) and d[2] == 1 # only patch increment by 1
os.system(f'echo "increment={increment}" >> $GITHUB_OUTPUT')
if increment:
print('Local version is higher than PyPI version. Publishing new version to PyPI ✅.')
id: check_pypi
- name: Publish to PyPI
continue-on-error: true
if: (github.event_name == 'push' || github.event.inputs.pypi == 'true') && steps.check_pypi.outputs.increment == 'True'
env:
PYPI_TOKEN: ${{ secrets.PYPI_TOKEN }}
run: |
python -m build
python -m twine upload dist/* -u __token__ -p $PYPI_TOKEN
- name: Deploy Docs
continue-on-error: true
if: (github.event_name == 'push' && steps.check_pypi.outputs.increment == 'True') || github.event.inputs.docs == 'true'
run: |
mkdocs gh-deploy || true
git checkout gh-pages
git push https://github.com/ultralytics/docs gh-pages --force

@ -0,0 +1,47 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
name: Close stale issues
on:
schedule:
- cron: '0 0 * * *' # Runs at 00:00 UTC every day
jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v7
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
stale-issue-message: |
👋 Hello there! We wanted to give you a friendly reminder that this issue has not had any recent activity and may be closed soon, but don't worry - you can always reopen it if needed. If you still have any questions or concerns, please feel free to let us know how we can help.
For additional resources and information, please see the links below:
- **Docs**: https://docs.ultralytics.com
- **HUB**: https://hub.ultralytics.com
- **Community**: https://community.ultralytics.com
Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed!
Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
stale-pr-message: |
👋 Hello there! We wanted to let you know that we've decided to close this pull request due to inactivity. We appreciate the effort you put into contributing to our project, but unfortunately, not all contributions are suitable or aligned with our product roadmap.
We hope you understand our decision, and please don't let it discourage you from contributing to open source projects in the future. We value all of our community members and their contributions, and we encourage you to keep exploring new projects and ways to get involved.
For additional resources and information, please see the links below:
- **Docs**: https://docs.ultralytics.com
- **HUB**: https://hub.ultralytics.com
- **Community**: https://community.ultralytics.com
Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
days-before-issue-stale: 30
days-before-issue-close: 10
days-before-pr-stale: 90
days-before-pr-close: 30
exempt-issue-labels: 'documentation,tutorial,TODO'
operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting.

@ -2,5 +2,7 @@ include *.md
include requirements.txt
include LICENSE
include setup.py
include ultralytics/assets/bus.jpg
include ultralytics/assets/zidane.jpg
recursive-include ultralytics *.yaml
recursive-exclude __pycache__ *

@ -14,7 +14,7 @@ torchvision>=0.8.1
tqdm>=4.64.0
# Logging -------------------------------------
tensorboard>=2.4.1
# tensorboard>=2.4.1
# clearml
# comet
@ -41,4 +41,3 @@ thop>=0.1.1 # FLOPs computation
# albumentations>=1.0.3
# pycocotools>=2.0.6 # COCO mAP
# roboflow
certifi>=2022.12.7 # not directly required, pinned by Snyk to avoid a vulnerability

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
__version__ = '8.0.50'
__version__ = '8.0.51'
from ultralytics.yolo.engine.model import YOLO
from ultralytics.yolo.utils.checks import check_yolo as checks

Binary file not shown.

Before

Width:  |  Height:  |  Size: 476 KiB

After

Width:  |  Height:  |  Size: 134 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 165 KiB

After

Width:  |  Height:  |  Size: 49 KiB

@ -14,7 +14,7 @@ import torch
import torch.nn as nn
from PIL import Image
from ultralytics.yolo.utils import LOGGER, ROOT, yaml_load
from ultralytics.yolo.utils import LINUX, LOGGER, ROOT, yaml_load
from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_version, check_yaml
from ultralytics.yolo.utils.downloads import attempt_download_asset, is_url
from ultralytics.yolo.utils.ops import xywh2xyxy
@ -143,7 +143,12 @@ class AutoBackend(nn.Module):
metadata = w.parent / 'metadata.yaml'
elif engine: # TensorRT
LOGGER.info(f'Loading {w} for TensorRT inference...')
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
try:
import tensorrt as trt # noqa https://developer.nvidia.com/nvidia-tensorrt-download
except ImportError:
if LINUX:
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
import tensorrt as trt # noqa
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
if device.type == 'cpu':
device = torch.device('cuda:0')
@ -230,7 +235,7 @@ class AutoBackend(nn.Module):
elif paddle: # PaddlePaddle
LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
import paddle.inference as pdi
import paddle.inference as pdi # noqa
w = Path(w)
if not w.is_file(): # if not *.pdmodel
w = next(w.rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
@ -260,11 +265,16 @@ class AutoBackend(nn.Module):
if isinstance(metadata, (str, Path)) and Path(metadata).exists():
metadata = yaml_load(metadata)
if metadata:
stride = int(metadata['stride'])
for k, v in metadata.items():
if k in ('stride', 'batch'):
metadata[k] = int(v)
elif k in ('imgsz', 'names') and isinstance(v, str):
metadata[k] = eval(v)
stride = metadata['stride']
task = metadata['task']
batch = int(metadata['batch'])
imgsz = eval(metadata['imgsz']) if isinstance(metadata['imgsz'], str) else metadata['imgsz']
names = eval(metadata['names']) if isinstance(metadata['names'], str) else metadata['names']
batch = metadata['batch']
imgsz = metadata['imgsz']
names = metadata['names']
elif not (pt or triton or nn_module):
LOGGER.warning(f"WARNING ⚠ Metadata not found for 'model={weights}'")
@ -285,7 +295,7 @@ class AutoBackend(nn.Module):
visualize (bool): whether to visualize the output predictions, defaults to False
Returns:
(tuple): Tuple containing the raw output tensor, and the processed output for visualization (if visualize=True)
(tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True)
"""
b, ch, h, w = im.shape # batch, channel, height, width
if self.fp16 and im.dtype != torch.float16:

@ -67,7 +67,8 @@ class ConvTranspose(nn.Module):
class DFL(nn.Module):
# Integral module of Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
# Integral module of Distribution Focal Loss (DFL)
# Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
def __init__(self, c1=16):
super().__init__()
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)

@ -8,7 +8,9 @@ import thop
import torch
import torch.nn as nn
from ultralytics.nn.modules import * # noqa: F403
from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify,
Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus,
GhostBottleneck, GhostConv, Segment)
from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, colorstr, emojis, yaml_load
from ultralytics.yolo.utils.checks import check_requirements, check_yaml
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights,
@ -324,9 +326,9 @@ class ClassificationModel(BaseModel):
def torch_safe_load(weight):
"""
This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised, it
catches the error, logs a warning message, and attempts to install the missing module via the check_requirements()
function. After installation, the function again attempts to load the model using torch.load().
This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised,
it catches the error, logs a warning message, and attempts to install the missing module via the
check_requirements() function. After installation, the function again attempts to load the model using torch.load().
Args:
weight (str): The file path of the PyTorch model.

@ -40,7 +40,10 @@ def linear_assignment(cost_matrix, thresh):
if cost_matrix.size == 0:
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
matches, unmatched_a, unmatched_b = [], [], []
# TODO: investigate scipy.optimize.linear_sum_assignment() for lap.lapjv()
cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
matches.extend([ix, mx] for ix, mx in enumerate(x) if mx >= 0)
unmatched_a = np.where(x < 0)[0]
unmatched_b = np.where(y < 0)[0]

@ -327,4 +327,4 @@ def copy_default_cfg():
if __name__ == '__main__':
# entrypoint(debug='yolo predict model=yolov8n.pt')
entrypoint(debug='yolo train model=yolov8n-seg.pt')
entrypoint(debug='')

@ -210,8 +210,7 @@ def check_det_dataset(dataset, autodownload=True):
for k in 'train', 'val', 'names':
if k not in data:
raise SyntaxError(
emojis(f"{dataset} '{k}:' key missing ❌.\n"
f"'train', 'val' and 'names' are required in data.yaml files."))
emojis(f"{dataset} '{k}:' key missing ❌.\n'train', 'val' and 'names' are required in all data YAMLs."))
data['names'] = check_class_names(data['names'])
data['nc'] = len(data['names'])
@ -236,11 +235,11 @@ def check_det_dataset(dataset, autodownload=True):
if val:
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
if not all(x.exists() for x in val):
msg = f"\nDataset '{dataset}' not found ⚠, missing paths %s" % [str(x) for x in val if not x.exists()]
m = f"\nDataset '{dataset}' images not found ⚠, missing paths %s" % [str(x) for x in val if not x.exists()]
if s and autodownload:
LOGGER.warning(msg)
LOGGER.warning(m)
else:
raise FileNotFoundError(msg)
raise FileNotFoundError(m)
t = time.time()
if s.startswith('http') and s.endswith('.zip'): # URL
safe_download(url=s, dir=DATASETS_DIR, delete=True)

@ -69,7 +69,7 @@ from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
from ultralytics.yolo.data.utils import IMAGENET_MEAN, IMAGENET_STD, check_det_dataset
from ultralytics.yolo.utils import (DEFAULT_CFG, LINUX, LOGGER, MACOS, __version__, callbacks, colorstr,
get_default_args, yaml_save)
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version
from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode
@ -601,7 +601,7 @@ class Exporter:
if n >= n_images:
break
dataset = LoadImages(check_det_dataset(check_yaml(self.args.data))['train'], imgsz=imgsz, auto=False)
dataset = LoadImages(check_det_dataset(self.args.data)['train'], imgsz=imgsz, auto=False)
converter.representative_dataset = lambda: representative_dataset_gen(dataset, n_images=100)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.target_spec.supported_types = []

@ -10,7 +10,7 @@ from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, ONLINE, RANK, ROOT,
callbacks, is_git_dir, is_pip_package, yaml_load)
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_pip_update, check_yaml
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml
from ultralytics.yolo.utils.downloads import GITHUB_ASSET_STEMS
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
@ -158,7 +158,7 @@ class YOLO:
Inform user of ultralytics package update availability
"""
if ONLINE and is_pip_package():
check_pip_update()
check_pip_update_available()
def reset(self):
"""

@ -263,8 +263,11 @@ class Boxes:
return self.boxes.__str__()
def __repr__(self):
return (f'Ultralytics YOLO {self.__class__.__name__}\n' + f'type: {type(self.boxes)}\n' +
f'shape: {self.boxes.shape}\n' + f'dtype: {self.boxes.dtype}\n + {self.boxes.__repr__()}')
return (f'{self.__class__.__module__}.{self.__class__.__name__}\n'
f'type: {self.boxes.__class__.__module__}.{self.boxes.__class__.__name__}\n'
f'shape: {self.boxes.shape}\n'
f'dtype: {self.boxes.dtype}\n'
f'{self.boxes.__repr__()}')
def __getitem__(self, idx):
return Boxes(self.boxes[idx], self.orig_shape)
@ -339,8 +342,11 @@ class Masks:
return self.masks.__str__()
def __repr__(self):
return (f'Ultralytics YOLO {self.__class__.__name__}\n' + f'type: {type(self.masks)}\n' +
f'shape: {self.masks.shape}\n' + f'dtype: {self.masks.dtype}\n + {self.masks.__repr__()}')
return (f'{self.__class__.__module__}.{self.__class__.__name__}\n'
f'type: {self.masks.__class__.__module__}.{self.masks.__class__.__name__}\n'
f'shape: {self.masks.shape}\n'
f'dtype: {self.masks.dtype}\n'
f'{self.masks.__repr__()}')
def __getitem__(self, idx):
return Masks(self.masks[idx], self.orig_shape)

@ -126,6 +126,37 @@ class IterableSimpleNamespace(SimpleNamespace):
return getattr(self, key, default)
def set_logging(name=LOGGING_NAME, verbose=True):
# sets up logging for the given name
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
logging.config.dictConfig({
'version': 1,
'disable_existing_loggers': False,
'formatters': {
name: {
'format': '%(message)s'}},
'handlers': {
name: {
'class': 'logging.StreamHandler',
'formatter': name,
'level': level}},
'loggers': {
name: {
'level': level,
'handlers': [name],
'propagate': False}}})
# Set logger
set_logging(LOGGING_NAME, verbose=VERBOSE) # run before defining LOGGER
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
if WINDOWS: # emoji-safe logging
info_fn, warning_fn = LOGGER.info, LOGGER.warning
setattr(LOGGER, info_fn.__name__, lambda x: info_fn(emojis(x)))
setattr(LOGGER, warning_fn.__name__, lambda x: warning_fn(emojis(x)))
def yaml_save(file='data.yaml', data=None):
"""
Save YAML data to a file.
@ -163,10 +194,13 @@ def yaml_load(file='data.yaml', append_filename=False):
dict: YAML data and file name.
"""
with open(file, errors='ignore', encoding='utf-8') as f:
# Add YAML filename to dict and return
s = f.read() # string
if not s.isprintable(): # remove special characters
# Remove special characters
if not s.isprintable():
s = re.sub(r'[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]+', '', s)
# Add YAML filename to dict and return
return {**yaml.safe_load(s), 'yaml_file': str(file)} if append_filename else yaml.safe_load(s)
@ -448,41 +482,6 @@ def colorstr(*input):
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
def remove_ansi_codes(string):
"""
Remove ANSI escape sequences from a string.
Args:
string (str): The input string that may contain ANSI escape sequences.
Returns:
str: The input string with ANSI escape sequences removed.
"""
return re.sub(r'\x1B\[([0-9]{1,2}(;[0-9]{1,2})?)?[m|K]', '', string)
def set_logging(name=LOGGING_NAME, verbose=True):
# sets up logging for the given name
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
logging.config.dictConfig({
'version': 1,
'disable_existing_loggers': False,
'formatters': {
name: {
'format': '%(message)s'}},
'handlers': {
name: {
'class': 'logging.StreamHandler',
'formatter': name,
'level': level}},
'loggers': {
name: {
'level': level,
'handlers': [name],
'propagate': False}}})
class TryExcept(contextlib.ContextDecorator):
# YOLOv8 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
def __init__(self, msg='', verbose=True):
@ -609,13 +608,6 @@ def set_settings(kwargs, file=USER_CONFIG_DIR / 'settings.yaml'):
# Run below code on yolo/utils init ------------------------------------------------------------------------------------
# Set logger
set_logging(LOGGING_NAME, verbose=VERBOSE) # run before defining LOGGER
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
if WINDOWS:
for fn in LOGGER.info, LOGGER.warning:
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
# Check first-install steps
PREFIX = colorstr('Ultralytics: ')
SETTINGS = get_settings()

@ -134,12 +134,20 @@ def check_latest_pypi_version(package_name='ultralytics'):
return None
def check_pip_update():
def check_pip_update_available():
"""
Checks if a new version of the ultralytics package is available on PyPI.
Returns:
bool: True if an update is available, False otherwise.
"""
from ultralytics import __version__
latest = check_latest_pypi_version()
if pkg.parse_version(__version__) < pkg.parse_version(latest):
if pkg.parse_version(__version__) < pkg.parse_version(latest): # update is available
LOGGER.info(f'New https://pypi.org/project/ultralytics/{latest} available 😃 '
f"Update with 'pip install -U ultralytics'")
return True
return False
def check_font(font='Arial.ttf'):

@ -9,7 +9,6 @@ import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sn
import torch
from PIL import Image, ImageDraw, ImageFont
from PIL import __version__ as pil_version
@ -161,6 +160,8 @@ class Annotator:
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
def plot_labels(boxes, cls, names=(), save_dir=Path('')):
import seaborn as sn
# plot dataset labels
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
b = boxes.transpose() # classes, boxes

Loading…
Cancel
Save