@ -55,7 +55,7 @@ See below for a quickstart install and usage examples, and see our [Docs](https:
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
<ahref="https://console.paperspace.com/github/ultralytics/ultralytics"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run on Gradient"></a>
<ahref="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a>
<ahref="https://www.kaggle.com/models/ultralytics/yolo11"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open In Kaggle"></a>
<ahref="https://console.paperspace.com/github/ultralytics/ultralytics"><imgsrc="https://assets.paperspace.io/img/gradient-badge.svg"alt="Run Ultralytics on Gradient"></a>
<ahref="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open Ultralytics In Colab"></a>
<ahref="https://www.kaggle.com/models/ultralytics/yolo11"><imgsrc="https://kaggle.com/static/images/open-in-kaggle.svg"alt="Open Ultralytics In Kaggle"></a>
<ahref="https://mybinder.org/v2/gh/ultralytics/ultralytics/HEAD?labpath=examples%2Ftutorial.ipynb"><imgsrc="https://mybinder.org/badge_logo.svg"alt="Open Ultralytics In Binder"></a>
</div>
Introducing [Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics), the latest version of the acclaimed real-time object detection and image segmentation model. YOLO11 is built on cutting-edge advancements in [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv), offering unparalleled performance in terms of speed and [accuracy](https://www.ultralytics.com/glossary/accuracy). Its streamlined design makes it suitable for various applications and easily adaptable to different hardware platforms, from edge devices to cloud APIs.